Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 591-598    DOI: 10.3785/j.issn.1008-9209.2019.11.081
Resource utilization & environmental protection     
Cadmium accumulation in soils developed from limestone and leaching characteristics of cadmium during development of the soils in western Zhejiang Province
Shuang ZHANG(),Mingkui ZHANG()
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1131KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to understand the geochemical characteristics of soil cadmium (Cd) during weathering and soil formation of limestone, three types of limestone soils were sampled at the same time from western Zhejiang Province. The Cd enrichment in limestone hills and nearby valleys and the vertical distribution of Cd in the soil profiles were studied. The leaching characteristics of Cd during development of the soils were analyzed by mass balance method with reference to stable element zirconium (Zr), and the results were also compared with those of yellowish red soils developed from local shale. The results showed that the leaching and accumulation of Cd in the limestone soils occurred simultaneously. Because of the special soil-forming process of limestone, the enrichment of Zr and Cd in the soils was obvious, and the enrichment amounts of soil Cd in limestone hills and nearby valleys were obviously higher than that of shale-derived hilly soil in the same area. The vertical distribution of Cd in three kinds of limestone soils had obvious differences and the chemical forms of Cd in different limestone soils were also different. The high leaching characteristics of Cd in the soils during weathering of limestone and the surface erosion of the limestone soils with high Cd content may be the main reasons for the high Cd accumulation in the soils in the limestone distribution area and its vicinity.



Key wordslimestone      cadmium      enrichment      leaching      high geological background     
Received: 08 November 2019      Published: 19 November 2020
CLC:  S 151  
Corresponding Authors: Mingkui ZHANG     E-mail: 11714047@zju.edu.cn;mkzhang@zju.edu.cn
Cite this article:

Shuang ZHANG,Mingkui ZHANG. Cadmium accumulation in soils developed from limestone and leaching characteristics of cadmium during development of the soils in western Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 591-598.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.11.081     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/591


浙西石灰岩发育土壤镉的积累及其成土过程中镉的淋失特征

为了解石灰岩风化成土过程中镉的土壤地球化学特征,从浙西地区同时采集3类石灰土表层和剖面分层土样,开展石灰岩丘陵及其附近沟谷地带土壤镉的富集及土壤剖面中镉的垂直分布特征研究;以稳定元素锆为参照,采用物质质量平衡法分析成土过程中土壤镉的淋失特征,并与当地泥页岩发育的黄红壤进行比较。结果表明:石灰岩成土过程中土壤镉同时发生了明显淋失与强烈富集现象。由于石灰岩成土过程比较特殊,土壤中锆和镉呈现明显的富集;石灰岩丘陵及其附近沟谷地带土壤镉的富集量明显高于同一地区泥页岩发育的土壤。3种石灰土剖面土壤镉的垂直分布有明显差异,不同石灰土镉的化学形态也有差异。石灰岩风化过程中土壤镉的高淋失特征及含镉较高的石灰土的地表侵蚀可能是石灰岩分布区及附近地区土壤镉积累较高的主要原因。


关键词: 石灰岩,  镉,  富集,  淋失,  地质高背景 

统计值

Statistical value

石灰岩丘陵土壤

Soils on limestone

hills (n=38)

石灰岩丘陵附近沟谷土壤

Soils in valley near

limestone hills (n=27)

泥页岩丘陵土壤

Soils on shale

hills (n=27)

泥页岩丘陵附近沟谷土壤

Soils in valley near shale

hills (n=27)

范围 Range/(mg/kg)0.173~3.5410.154~0.6280.105~0.4160.115~0.367

平均值±标准差

Average±standard deviation/(mg/kg)

0.850±0.868a0.315±0.115b0.178±0.073c0.219±0.062bc
变异系数 Coefficient of variation/%102374128
Table 1 Cd content in surface soils
Fig. 1 Vertical distributions of organic matter (A) and pH (B) in the four soilsRLS: Red limestone soil; BRLS: Brown limestone soil; BLLS: Black limestone soil; YRS: Yellowish red soil.
Fig. 2 Vertical distributions of clay (A), total Cd (B), total Ca (C) and total Zr (D) contents in the four soilsRLS: Red limestone soil; BRLS: Brown limestone soil; BLLS: Black limestone soil; YRS: Yellowish red soil.
Fig. 3 Transport proportions of total Ca (A) and total Cd (B) in the four soilsRLS: Red limestone soil; BRLS: Brown limestone soil; BLLS: Black limestone soil; YRS: Yellowish red soil.

土壤类型

Soil type

交换态

Exchangeable form

碳酸盐结合态

Carbonate

bounded form

有机质结合态

Organic matter bounded form

氧化物结合态

Oxide bounded form

残留态

Residual form

红色石灰土 Red limestone soil20.181.8710.3522.9844.62
棕色石灰土 Brown limestone soil11.547.2515.9820.1445.09
黑色石灰土 Black limestone soil9.147.1420.1413.2550.33
黄红壤 Yellowish red soil13.144.1211.8719.8751.00
Table 2 Chemical forms and proportions of Cd in 0-5 cm depth of the four soils
[1]   温琰茂,曾水泉,潘树荣,等.中国东部石灰岩土壤元素含量分异规律研究. 地理科学,1994,14(1):16-21.
WEN Y M, ZENG S Q, PAN S R, et al. Study on the differentiation law of element content in limestone soil in east China. Scientia Geographica Sinica, 1994,14(1):16-21. (in Chinese with English abstract)
[2]   郭超,文宇博,杨忠芳,等.典型岩溶地质高背景土壤镉生物有效性及其控制因素研究. 南京大学学报(自然科学),2019,55(4):678-687. DOI:10.13232/j.cnki.jnju.2019.04.018
GUO C, WEN Y B, YANG Z F, et al. Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background. Journal of Nanjing University(Natural Science), 2019,55(4):678-687. (in Chinese with English abstract)
doi: 10.13232/j.cnki.jnju.2019.04.018
[3]   WEN Y B, LI W, YANG Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere, 2020,245:125620. DOI:10.1007/978-3-319-53348-3_21
doi: 10.1007/978-3-319-53348-3_21
[4]   WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environmental Pollution, 2020,258:113645. DOI:10.1016/j.envpol.2019.113645
doi: 10.1016/j.envpol.2019.113645
[5]   RAMBEAU C M C, BAIZE D, SABY N, et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Earth and Environmental Science, 2010,61(8):1573-1585. DOI:10.1007/s12665-010-0471-0
doi: 10.1007/s12665-010-0471-0
[6]   朱有为,段丽丽,周银,等.浙江省主要优势农产品产地土壤-农作物镉含量空间分布及相关性研究. 农业资源与环境学报,2014,31(1):79-84. DOI:10.13254/j.jare.2013.0187
ZHU Y W, DUAN L L, ZHOU Y, et al. Spatial pattern and interrelation of total Cd in soils and crops across the agricultural regions of Zhejiang Province, China. Journal of Agricultural Resources and Environment, 2014,31(1):79-84. (in Chinese with English abstract)
doi: 10.13254/j.jare.2013.0187
[7]   田秀红.我国城郊蔬菜重金属污染研究进展. 食品科学,2009,30(21):449-453.
TIAN X H. Research progress on heavy-metal contamination of vegetables grown in Chinese suburb. Food Science, 2009,30(21):449-453. (in Chinese with English abstract)
[8]   张继舟,王宏韬,倪红伟,等.我国农田土壤重金属污染现状、成因与诊断方法分析. 土壤与作物,2012,1(4):212-218.
ZHANG J Z, WANG H T, NI H W, et al. Current situation, sources and diagnosis method analysis of heavy metal contamination in agricultural soils. Soil and Crop, 2012,1(4):212-218. (in Chinese with English abstract)
[9]   唐豆豆,袁旭音,汪宜敏,等.地质高背景农田土壤中水稻对重金属的富集特征及风险预测. 农业环境科学学报,2018,37(1):18-26. DOI:10.11654/jaes.2017-0801
TANG D D, YUAN X Y, WANG Y M, et al. Enrichment characteristics and risk prediction of heavy metals in rice grains growing in paddy soil with a high geological background. Journal of Agro-Environment Science, 2018,37(1):18-26. (in Chinese with English abstract)
doi: 10.11654/jaes.2017-0801
[10]   刘意章,肖唐付,熊燕,等.西南高镉地质背景区农田土壤与农作物的重金属富集特征. 环境科学,2019,40(6):2877-2884. DOI:10.13227/j.hjkx.201811108
LIU Y Z, XIAO T F, XIONG Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, Southwestern China. Environmental Science, 2019,40(6):2877-2884. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201811108
[11]   中国科学院南京土壤研究所.土壤理化分析.上海:上海科技出版社,1978.
Chinese Academy of Sciences. Institute of Soil Science. Soil Physics and Chemistry Analysis. Shanghai: Shanghai Scientific and Technical Publisher, 1978. (in Chinese)
[12]   AMACHER M C. Nickel, cadmium, and lead//SPARKS D L. Methods of Soil Analysis. Part3.
Methods Chemical. Madison, US: ASA, CSSA, and SSSA, 1996:739-768.
[13]   NANNONI F, PROTANO G. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Science of the Total Environment, 2016,568(15):1-10. DOI:10.1016/j.scitotenv.2016.05.208
doi: 10.1016/j.scitotenv.2016.05.208
[14]   ZONG Y T, QING X, LU S G. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China). Environmental Science & Pollution Research International, 2016,23(24):14600-14607. DOI:10.1007/s11356-016-6652-y
doi: 10.1007/s11356-016-6652-y
[15]   ZHAO K L, FU W J. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China. International Journal of Environmental Research and Public Health, 2015,12(2):1577-1594. DOI:10.3390/ijerph120201577
doi: 10.3390/ijerph120201577
[16]   朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应.北京:地质出版社,2004.
ZHU L J, LI J Y. Weathering of Carbonate Rocks and Its Environmental Effects. Beijing: Geological Press, 2004. (in Chinese)
[17]   伍福琳,陈丽,易廷辉,等.重庆市农地重金属基线值的厘定及其积累特征分析. 环境科学,2018,39(11):5116-5126. DOI:10.13227/j.hjkx.20180325
WU F L, CHEN L, YI T H, et al. Determination of heavy metal baseline values and analysis of its accumulation characteristics in agricultural land in Chongqing. Environmental Science, 2018,39(11):5116-5126. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.20180325
[18]   孙子媛,文雪峰,吴攀,等.喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究. 地球与环境,2019,47(1):50-56. DOI:10.14050/j.cnki.1672-9250.2019.47.011
SUN Z Y, WEN X F, WU P, et al. Excessive degress and migration characteristics of heavy metals in typical weathering profiles in karst areas. Earth and Environment, 2019,47(1):50-56. (in Chinese with English abstract)
doi: 10.14050/j.cnki.1672-9250.2019.47.011
[19]   周丽,杨丰,金宝成,等.喀斯特山区不同土地利用方式对土壤重金属的影响. 北方园艺,2019(8):110-117. DOI:10.11937/bfyy.20183380
ZHOU L, YANG F, JIN B C, et al. Influence of different land use types on soil heavy metals in the karst mountain area. Northern Horticulture, 2019(8):110-117. (in Chinese with English abstract)
doi: 10.11937/bfyy.20183380
[20]   LIU Y, XIAO T, PERKINS R B, et al. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 2016,176:42-49. DOI:10.1016/j.gexplo.2016.04.004
doi: 10.1016/j.gexplo.2016.04.004
[1] Long MENG,Tuhai HUANG,Jian CHEN,Fulin ZHONG,Jiachun SHI,Jianming XU. Safe utilization of farmland soil with cadmium pollution: strategies and deliberations.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 263-271.
[2] Ang WANG,Danchao DAI,Xuzhou MA,Qun MOU,Yongqing YU,Weiqun Lü. Effects of rice-crab culture on nitrogen leaching in rice fields in the north of China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 332-342.
[3] LIU Mengqi, ZHANG Guanglu, GUO Changquan, YANG Tingyu, MI Yuling. Attenuating effect of taurine on oxidative damage and Nrf2/HO-1 pathway induced by cadmium in testicular cells of embryonic chickens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 619-628.
[4] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, ZHANG Xin, HUANG Yuqing, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider . Effects of zinc and silicon on cadmium toxicity and mineral element translocation in two rice (Oryza sativa) genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 294-310.
[5] CHEN Shanshan, ZHOU Yekai, ZHANG Zhiming, ZHANG Min, WANG Qiaomei. Effects of carbon dioxide enrichment on fruit development and quality of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 318-326.
[6] HE Xiaolin, GUAN Meiyan, FAN Shikai, HE Hu, JIN Chongwei. Prevention of Cd accumulation in plants by mineral nutrients: From mechanisms to applications[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 747-756.
[7] DAI Zou, YU Huaqing, GUO Changchun, MA Jun, LI Na, YANG Zhiyuan, XU Hui, SUN Yongjian. Effects of Na2SeO3 and Na2SiO3 on Cd uptake and accumulation in two different rice (Oryza Sativa L.) cultivars at jointing stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 441-450.
[8] ZHOU Huifang1, WANG Jingwen2, SUN Jilin2, LI Dan2, ZHANG Qichun1* . Remediation of cadmium-tolerant bacteria combined with plant absorption on soil heavy metal#br# cadmium pollution[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 341-349.
[9] LIU Yuan, WANG Niya, ZHANG Wen, YU Jia,WEI Hong. Effect of cadmium stress on the content of phytochelatins in Salix variegata[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 298-306.
[10] FAN Lihua, MO Hongfei, ZHANG Xiaofeng, SHUAI Jiangbing, CHEN Qing.  Identification of swine- specific microbial genetic markers using competitive DNA hybridization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 163-172.
[11] LUO Liangxu, GAO Suping, WANG Chengcong, LEI Ting, WEN Jinyan, LUO Yan.  Physio- ecological responses of seeds and seedlings of Hosta ventricosa to combined pollution of simulated acid rain and cadmium .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 192-202.
[12] DAI Zou, WANG Chunyu, LI Na, JIANG Mingjin, YAN Fengjun, XU Hui, SUN Yongjian, MA Jun. Alleviation role and effects of selenium on mineral nutrients in rice (Oryza sativa) seedlings under cadmium stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 720-730.
[13] MENG Fande, YUAN Guodong, WEI Jing, BI Dongxue, WANG Hailong, LIU Xingyuan. Humic acid from leonardite for cadmium adsorption and potential applications[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 460-468.
[14] ZHU Pan, YING Jieguan, PENG Shu’ang, JIANG Cuncang. Effects of biochar on the contents of potassium and phosphorus, and their leaching rates in red soil under simulated leaching condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 478-484.
[15] Yang Weidong, Li Tingqiang, Ding Zheli, Yang Xiaoe* . Responses of ascorbate-glutathione cycle and glutathione metabolism to cadmium stress in Salix matsudana  Koidz seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 551-558.