Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (6): 657-666    DOI: 10.3785/j.issn.1008-9209.2019.02.142
Crop cultivation & physiology     
Seed vigor testing by low temperature germination in early rice
Dongdong CAO1,2(),Wei WU3,Shanyu CHEN1,Yebo QIN4,Guanhai RUAN1,Min LU5,Peili QIAN5,Yutao HUANG1()
1.Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.Zhejiang Nongke Seed Co. , Ltd. , Hangzhou 310021, China
3.Seed Management Station of Zhejiang Province, Hangzhou 310020, China
4.Agricultural Technology Extension Center of Zhejiang Province, Hangzhou 310020, China
5.Huzhou Keao Seed Co. , Ltd. , Huzhou 313000, Zhejiang, China
Download: HTML   HTML (   PDF(878KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking the seeds of six early rice cultivars ‘Zhuliangyou 06’, ‘Zhuliangyou 101’, ‘Zhongzao 39’, ‘Jinzao 47’, ‘Zhongjiazao 17’ and ‘Yongxian 15’ as materials, the seed vigor of these early cultivars was determinated by the standard germination test, low temperature germination test (12 ℃, 15 ℃ and 18 ℃) and field emergence test. The results showed that the germination percentages at 18 ℃ after 4-5 days and 15 ℃ after 5-7 days had significantly positive relationship to the field emergence (FE). Especially, the correlation coefficient between germination percentage at 18 ℃ after 4 days and FE reached 0.932, revealing a fast and accurate method for measuring the seed vigor at a low temperature. The endogenous ABA content of seed at 18 ℃ after 4 days were negatively related to the germination percentages and FE. The real-time fluorescence quantitative polymerase chain reaction analysis showed the expression levels of ABA-synthesis related genes in high-vigor seeds were significantly lower than those in the low-vigor seeds. However, the most genes involved in ABA-catabolism and signal transduction related genes were highly expressed in the high-vigor seeds. Different responses in ABA metabolism and chilling signal transduction to low temperature stress might explain the seed vigor differences in the 12 early rice seed samples. The present study further reveals the internal mechanism of low temperature stress regulating seed vigor of early rice, which could provide a new theoretical basis for testing seed vigor of early rice with low temperature germination test.



Key wordsearly rice      low temperature germination      germination percentage      seed vigor      abscisic acid      signal transduction     
Received: 14 February 2019      Published: 20 January 2020
CLC:  S 311  
Corresponding Authors: Yutao HUANG     E-mail: jellycao@163.com;hytcsy@zju.edu.cn
Cite this article:

Dongdong CAO,Wei WU,Shanyu CHEN,Yebo QIN,Guanhai RUAN,Min LU,Peili QIAN,Yutao HUANG. Seed vigor testing by low temperature germination in early rice. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 657-666.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.02.142     OR     http://www.zjujournals.com/agr/Y2019/V45/I6/657


低温发芽测定早稻种子活力

以‘株两优06’‘株两优101’‘中早39’‘金早47’‘中嘉早17’和‘甬籼15’6个早稻品种种子为试验材料,采用标准发芽试验、低温发芽试验(12 ℃、15 ℃和18 ℃)和田间出苗试验等方法测定水稻种子活力。结果表明,18 ℃发芽4~5 d、15 ℃发芽5~7 d的发芽率与田间出苗率有着显著的正相关关系,其中18 ℃发芽4 d的发芽率与田间出苗率相关系数达到了0.932,能够有效地测定水稻种子活力。此外,18 ℃发芽4 d种子的内源脱落酸(abscisic acid, ABA)含量与当天的发芽率、田间出苗率呈显著的负相关关系。相比于低活力种子样品,各品种中高活力种子样品的ABA合成相关基因表达量大都显著降低,而ABA分解相关基因及ABA信号传导相关基因表达量大都显著提高。12个早稻种子样品之间ABA代谢、信号传导及其对低温胁迫响应基因表达量的差异,可能是低温胁迫下种子活力差异的重要原因。本研究结果进一步揭示了低温胁迫调控早稻种子活力的内在机制,为低温发芽试验测定早稻种子活力的方法提供了新的理论依据。


关键词: 早稻,  低温发芽,  发芽率,  种子活力,  脱落酸,  信号传导 
Fig. 1 Change of daily maximum temperature and minimum temperature during the field emergence test

基因名称

Gene name

基因登录号

Gene accession No.

引物序列

Primer sequence

18S rRNAAK059783

F: 5-CTACGTCCCTGCCCTTTGTACA-3

R: 5-ACACTTCACCGGACCATTCAA-3

OsNCED1XM_015771176.2

F: 5-TCCATGAGGCTTTCCTACATC-3

R: 5-GCGTTCTTCTTCCTGCCATA-3

OsNCED3XM_015776052.1

F: 5-TCGCCATCACCGAGAACTA-3

R: 5-TCTCCTGGAGCTTGAACACC-3

OsNCED4XM_015790372.2

F: 5-CCTCCTATAAATCTCCCCATGA-3

R: 5-GGATTCGAATAATTTCGAGGAG-3

OsZEP1XM_015835992.1

F: 5-AATGCCTTTGATGTTGACCTG-3

R: 5-TGGTCATTTGCCTTGTCAGA-3

OsAAO2XM_006650643.2

F: 5-TGATCCAGGGAGGGTTCAC-3

R: 5-CTTCTCTTTGATGGGCTTCAG-3

OsAAO3XM_015774952.1

F: 5-TCAAGCGAATGGTGACACTT-3

R: 5-AACTCCTCGACGCTCTTGG-3

OsABA8ox1XM_015772227.2

F: 5-GATGAAGACTTACGCGCTGA-3

R: 5-CTCCTCGATGTAGCGCATCT-3

OsABA8ox2XM_015784024.2

F: 5-TTTGATCCTTCTAGGTTCGACTG-3

R: 5-CCTGCTCCAAATACCAGCA-3

OsPYL3XM_015771557.1

F: 5-TCGTGGGAGGTGATCATAGG-3

R: 5-TTCGGACAAGTGGTTTCCAT-3

OsPYL5XM_015785221.2

F: 5-TCCTGTTCACCTCGTGTGG-3

R: 5-CTGACGAACGGCTTGTACCT-3

OsPYL9XM_015769300.2

F: 5-TCCGTCACCGAGTTCTCCT-3

R: 5-ACTCGACGACGACGCAGTA-3

OsPP2C2XM_015770920.2

F: 5-GGTGGTATGATTGAAGGGTTG-3

R: 5-CCAATCATCTTGTCCATTATTCG-3

OsPP2C3XM_026022652.1

F: 5-ACATCCTCGCTGATGACATAAC-3

R: 5-TAAGAAACCACGTCCGCACT-3

OsSnRK2XM_015783665.2

F: 5-GGGAAAGACCATACCATATTGC-3

R: 5-CGACGATGATCCTGTAATGGTA-3

OsDREB1cXM_015786965.2

F: 5-TCGACCAGCCGTCCTACTAC-3

R: 5-CGTACATCTGAACGCTCT-3

OsDREB1fXM_015790359.2

F: 5-TGGAGGAGAAACCACGAGTT-3

R: 5-CCAACATTGGGTCAATCTCA-3

OsDREB2aXM_026022985.1

F: 5-CGCCTATGGCTAGGATCATT-3

R: 5-CTTGCCGCCTCATCGTAT-3

Table 1 Information of primer sequences

种子样品

Seed samples

发芽势

GE/%

发芽率

GP/%

发芽指数

GI

活力指数

VI

田间出苗率

FE/%

ZLY06-H80.11±3.725a83.33±1.862ab12.66±0.085a3.68±0.113ab76.33±5.531a
ZLY06-L60.76±3.812bc65.05±1.613d11.22±0.144bc3.04±0.024cd44.23±3.222d
ZLY101-H81.72±0.931a87.63±4.059a13.14±0.373a3.85±0.242a79.02±3.437a
ZLY101-L58.60±6.118c80.65±4.267b10.74±0.213c2.82±0.162d43.34±1.380d
ZZ-H82.26±3.226a87.10±5.815a13.02±0.617a3.37±0.141bc66.35±4.501b
ZZ-L70.97±7.391b77.42±4.267c11.13±0.281bc2.89±0.058d53.49±2.343c
JZ-H81.72±1.862a84.95±3.357a12.90±0.337a3.47±0.244ab77.56±5.415a
JZ-L62.90±6.381bc76.34±5.185c10.70±0.578c2.81±0.246d69.71±7.683b
ZJZ-H82.79±6.516a89.25±4.928a13.33±0.814a3.66±0.259ab79.30±4.339a
ZJZ-L65.59±4.928bc82.78±2.464b11.67±0.286b2.69±0.169d52.16±5.114c
YX-H81.18±1.931a84.41±2.428ab12.85±0.309a3.46±0.369ab68.04±3.181b
YX-L40.86±5.185d70.97±8.177c8.80±0.653d2.20±0.280e51.46±6.190c
Table 2 Field performance of early rice seed samples
参量 Parameter发芽势 GE发芽率 GP发芽指数 GI活力指数 VI田间出苗率 FE
发芽势 GE1.000
发芽率 GP0.883***1.000
发芽指数 GI0.975***0.958***1.000
活力指数 VI0.931***0.867***0.934***1.000
田间出苗率 FE0.704**0.628**0.723**0.778**1.000
Table 3 Correlation analysis between germination energy (GE), germination percentage (GP), germination index (GI), vigor index (VI) and field emergence (FE) of early rice seed samples

参量

Parameter

发芽率 GP

第4天

4th day

第5天

5th day

第6天

6th day

第7天

7th day

第8天

8th day

第9天

9th day

田间出苗率

FE

18 ℃0.932***0.817***0.4870.1870.2730.403
15 ℃0.681*0.597*0.577*0.4890.438
12 ℃0.3040.4260.3420.331
Table 4 Correlation analysis between germination percentage (GP) under chilling stress and field emergence (FE) of early rice seed samples
Fig.2 Regression analysis between germination percentage and field emergence on the 4th day (A) and the 5th day (B) at 18 ℃ for early rice seed samples
Fig. 3 Abscisic acid (ABA), gibberellin (GA) contents and GA/ABA ratio of early rice seed samples after 4 days of germination at 18 ℃ABA and GA contents are calculated on the basis of fresh mass. Different lowercase letters above the bars indicate significant differences between different vigors of the same cultivar at the 0.05 probability level.

参量

Parameter

ABA 含量

ABA

content

GA含量

GA

content

GA/ABA比例

GA/ABA ratio

发芽率

Germination percentage

-0.677*0.1180.565*

田间出苗率

Field emergence

-0.766**0.0450.576*
Table 5 Correlation analysis among ABA, GA contents, GA/ABA ratio and germination percentage after 4 days of germination at 18 ℃ and field emergence of early rice seed samples
Fig. 4 Expression levels of ABA metabolism-related genes in rice seed after 4 days of germination at 18 ℃Different lowercase letters above the bars indicate significant differences between different vigors of the same cultivar at the 0.05 probability level.
Fig. 5 Expression levels of ABA signal transduction-related genes in rice seed after 4 days of germination at 18 ℃Different lowercase letters above the bars indicate significant differences between different vigors of the same cultivar at the 0.05 probability level.
[1]   张国平,周伟军.作物栽培学.杭州:浙江大学出版社,2006:4-7.
ZHANG G P, ZHOU W J. Crop Production. Hangzhou: Zhejiang University Press, 2006:4-7. (in Chinese)
[2]   孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展.中国农业科学,2007,40(1):48-53.
SUN Q, WANG J H, SUN B Q. Advances on seed vigor physiological and genetic mechanisms. Scientia Agricultura Sinica, 2007,40(1):48-53. (in Chinese with English abstract)
[3]   张瑛,滕斌,吴敬德,等.水稻种子高温高湿人工加速老化试验方法研究.中国粮油学报,2010,25(10):8-12.
ZHANG Y, TENG B, WU J D, et al. Study on accelerated aging test of rice seeds with high temperature and humidity. Journal of the Chinese Cereals and Oils Association, 2010,25(10):8-12. (in Chinese with English abstract)
[4]   MARCOS-FILHO J. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 2015,72(4):363-374.
[5]   张安鹏,钱前,高振宇.水稻种子活力的研究进展.中国水稻科学,2018,32(3):296-303.
ZHANG A P, QIAN Q, GAO Z Y. Research advances on rice seed vigor. Chinese Journal of Rice Science, 2018,32(3):296-303. (in Chinese with English abstract)
[6]   曹栋栋,阮晓丽,詹艳,等.杂交水稻种子不同活力测定方法与其田间成苗率的相关性.浙江农业学报,2014,26(5):1145-1150.
CAO D D, RUAN X L, ZHAN Y, et al. Relativity analysis between seedling percentage in field and different seed vigor testing methods of hybrid rice seeds. Acta Agriculturae Zhejiangensis, 2014,26(5):1145-1150. (in Chinese with English abstract)
[7]   陈一清,高铸九.水稻品种耐冷性鉴定.上海农业学报,1990,6(1):65-72.
CHENG Y Q, GAO Z J. Identification of cold tolerant rice varieties. Acta Agriculturae Shanghai, 1990,6(1):65-72. (in Chinese with English abstract)
[8]   傅丹桂,孙雁,黄正仙,等.水稻种子不同活力测定方法的比较.云南农业大学学报(自然科学),2018,33(5):811-817.
FU D G, SUN Y, HUANG Z X, et al. Comparative research on the testing methods of different seed vigor in rice. Journal of Yunnan Agricultural University (Natural Science), 2018,33(5):811-817. (in Chinese with English abstract)
[9]   International Seed Testing Association (ISTA). International Rules for Seed Testing. Bassersdorf, Switzerland: International seed testing association, 2016.
[10]   HUANG Y T, LIN C, HE F, et al. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biology, 2017,17(1):1-16.
[11]   LUO Y, LIN C, FU Y Y, et al. Single counts of radicle emergence can be used as a fast method to test seed vigor of indica rice. Seed Science and Technology, 2017,45(1):222-229.
[12]   DANG X, THI T G T, DONG G, et al. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta, 2014,239(6):1309-1319.
[13]   曹微,王燕,谭斌,等.水稻品种直播相关的种子低温和低氧萌发活力评价.分子植物育种,2018,16(10):3259-3268.
CAO W, WANG Y, TAN B, et al. Evaluation of seed germination vigor of rice cultivars under low temperature or hypoxic condition related with direct seeding rice. Molecular Plant Breeding, 2018,16(10):3259-3268. (in Chinese with English abstract)
[14]   RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor. Annual Review of Plant Biology, 2012,63(3):507-533.
[15]   SAH S K, REDDY K R, LI J X. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 2016,7:571-583.
[16]   HUANG L, HONG Y B, ZHANG H J, et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biology, 2016,16(1):203.
[17]   KIM H, HWANG H, HONG J W, et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Journal of Experimental Botany, 2012,63(2):1013-1024.
[18]   MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009,324(5930):1064-1068.
[19]   PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009,324(5930):1068-1071.
[20]   TIAN X J, WANG Z Y, LI X F, et al. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice, 2015,8:28.
[21]   WANG Q Y, GUAN Y C, WU Y R, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008,67(6):589-602.
[1] WANG Yan, LIANG Chenggang, CHEN Qingqing, SHI Taoxiong, CHEN Qijiao, MENG Ziye, DENG Jiao, HUANG Juan, CHEN Qingfu. Analysis of abscisic acid-insensitive gene (ABI) sequence and phylogenetic relationship in genus Fagopyrum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 536-542.
[2] TAO Xiaoya, LI Jiayin, MAO Linchun. Effect of abscisic acid on wound-healing process in postharvest tomato fruit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 321-326.