Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (5): 603-610    DOI: 10.3785/j.issn.1008-9209.2018.11.151
Animal sciences & veterinary medicine     
Cloning and tissue expression of alternative spliceosome in chicken G-protein alpha subunit gene
Xuedong ZHANG(),Huanhuan WANG,Ying GE,Dandan SONG,Lei ZHANG,Qinghai LI,Lifeng LOU
Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
Download: HTML   HTML (   PDF(1534KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to research deeply the transcription and splicing situations of chicken G-protein alpha subunit gene (GNAS), we used 5′ and 3′ rapid-amplification cDNA end (RACE) technology to clone and sequence the chicken GNAS gene, and used quantitative polymerase chain reaction (PCR) to detect the expression level of GNAS spliceosome in seven tissues of chicken, such as skin, pectoral muscle, heart, brain, liver, lung, and abdominal fat. The results showed that the chicken GNAS gene had two transcriptional spliceosomes of 1 554 bp and 1 796 bp, respectively. Both of spliceosomes included 12 exons, and only the length and position of their first exon were different, and the second to twelfth exons were the same. Clone 1 (1 554 bp) coded 417 amino acids, while clone 2 (1 796 bp) coded 379 amino acids. Protein alignment in the NCBI database showed that the similarity between the 379 amino acid sequence of the clone 2 and Gαs subunits of the known human and mouse GNAS genes was 93%. The 417 amino acid sequence of the clone 1 was more similar with the XLαs subunit, and their similarity was 87%. The gene expression detection showed that these two transcriptional spliceosomes had different degrees of expression in the seven tissues: the highest expression in the brain (P<0.01), next in the skin (P<0.01 or P<0.05), and the lower expressions in the lung, pectoral muscle, heart and abdominal fat.



Key wordschicken      G-protein alpha subunit gene      spliceosome      cloning      expression     
Received: 15 November 2018      Published: 05 December 2019
CLC:  S 831.2  
Corresponding Authors: Xuedong ZHANG     E-mail: bigzhengliang@hotmail.com
Cite this article:

Xuedong ZHANG,Huanhuan WANG,Ying GE,Dandan SONG,Lei ZHANG,Qinghai LI,Lifeng LOU. Cloning and tissue expression of alternative spliceosome in chicken G-protein alpha subunit gene. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 603-610.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.11.151     OR     http://www.zjujournals.com/agr/Y2019/V45/I5/603


鸡G蛋白α亚基基因可变剪接体的克隆和组织表达

为深入研究鸡G蛋白α亚基(G-protein alpha subunit, GNAS)基因的转录剪接情况,采用5′和3′cDNA末端快速扩增(rapid-amplification cDNA ends, RACE )技术,对鸡GNAS基因进行克隆测序;并采用定量聚合酶链式反应(polymerase chain reaction, PCR)技术,检测鸡皮肤、胸肌、心、脑、肝、肺和腹脂等7种组织中GNAS基因剪接体的表达量。结果表明:鸡GNAS基因存在1 554和1 796 bp 2种转录剪接体,均含12个外显子,二者仅第1外显子的长度和位置不同,其余第2-12外显子相同。克隆子1(1 554 bp)编码417个氨基酸,克隆子2(1 796 bp)编码379个氨基酸。在NCBI数据库中进行蛋白比对发现,克隆子2的氨基酸序列与已知的人和小鼠的GNAS基因Gαs亚基同源相似度达93%,而克隆子1的氨基酸序列与XLαs亚基的同源性较高(相似度87%)。表达量检测表明,2种转录剪接体在7种组织中均有不同程度的表达,其中:在脑组织中的表达量最高,与其他组织间差异极显著(P<0.01),在皮肤组织中的表达量(P<0.01或P<0.05)次之;而在肺、胸肌、肝、心、腹脂等组织中的表达量较低。


关键词: 鸡,  G蛋白α亚基基因,  剪接体,  克隆,  表达 

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

UPM longTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
UPM shortCTAATACGACTCACTATAGGGC
5′GSP-1GGTCCGTAGCCACCTGTTGTTCCAG
5′GSP-2CGGTTGGTCTGATTGTCCTCTCGTA
3′GSP-1GGCAAGACGACGGTGTGAAAGCCTGC
3′GSP-2GGCAACGAGATGAACGCCGAAAATGG
Table 1 RACE primer information of GNAS gene

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

P_XLas

F: GCGGATAAGAAGCGGAGCAAGAG

R: GGTGCGTCTGCTTGTACTCCCTCT

73
P_Gαs

F: AGAAGCAGCTGCAGAAGGAC

R: GTTGCCCATTGCTGTCACTA

212
P_RPL4

F: CCGCAAACTGGATGATCTGTATG

R: GCATCGGCAGGTTGTAGTCAC

74
Table 2 Primer information of gene expression detection
Fig. 1 PCR products of 5´ and 3´ RACE of chicken GNAS geneM: DL2000 marker; 1 and 2: PCR products of the first 5´ RACE circle; 3 and 4: PCR products of the second 5´ RACE circle; 5: PCR product of the first 3´ RACE circle; 6: PCR product of the second 3´ RACE circle.

序号

No.

克隆子1

Clone 1/bp

克隆子2

Clone 2/bp

GNAS基因中的起止位置1)

Start and end positions in GNAS gene1)

起始 Start终止 End

合计

Total

1 5541 796
13076312
54947 20947 757
2737351 12851 200
3555582 19682 250
412012082 33282 451
5989897 10697 203
65555119 501119 555
77474122 426122 499
85959122 879122 937
9121121124 010124 130
10131131124 644124 774
116868125 820125 887
12393393126 813127 205
Table 3 Information of the clones obtained from RACE of chicken GNAS gene
Fig. 2 Full-length sequences of two transcriptional spliceosomes of chicken GNAS geneA. 5´UTR and first exon of clone 1; B: 5´UTR and first exon of clone 2; C: The second to twelfth exons and 3´UTR of two spliceosomes. The upper part of each row is the nucleotide sequence of spliceosomes, and the lower part is the coding amino acid sequence of spliceosomes. The number and arrow upon nucleotides represent the start position of twelve exons. The underlines and wavy lines under nucleotides represent the position of primers used in expression detection of clone 1 and clone 2, respectively.
Fig. 3 Protein homology alignment results of two transcriptional spliceosomes of chicken GNAS geneA. Homologous cladogram of 417 aa sequence blasted with human and mouse; B. Homologous cladogram of 379 aa sequence blasted with human and mouse; C. Homologous cladogram of 417 aa and 379 aa sequences blasted with chicken.

比对蛋白

的序列号

Protein ID

物种

Species

蛋白说明

Protein description

编码氨基

酸数

Number of amino

acids (aa)

与417 aa的相似度

Similarity with 417 aa/%

与379 aa的相似度

Similarity with 379 aa/%

蛋白对应的mRNA序列号

mRNA

sequence ID

mRNA序列长度

mRNA

sequence

length/bp

NP_001070957.1人 HumanProtein GNAS isoform g37987(323/370)93(353/379)NM_001077489.31 949
NP_536350.2人 HumanProtein GNAS isoform XLαs1 03784(332/393)85(325/384)NM_080425.33 784
NP_001350959.1小鼠 MouseProtein GNAS isoform i37987(322/370)93(352/379)NM_001364030.11 786
NP_001070975.1小鼠 MouseProtein GNAS isoform XLαs1 11987(330/379)87(322/370)NM_001077507.23 737
NP_034439.2小鼠 MouseProtein GNAS isoform XLαs1 13384(331/393)84(323/384)NM_010309.43 779
XP_024998120.1鸡 ChickenProtein GNAS isoform X1417100(417/417)94(349/370)XM_025142352.15 002
XP_024998121.1鸡 ChickenProtein GNAS isoform X237994(349/370)100(379/379)XM_025142353.15 859
XP_024998122.1鸡 ChickenProtein GNAS isoform X3349100(333/333)98(336/342)XM_025142354.14 754
XP_024998123.1鸡 ChickenProtein GNAS isoform X4320100(320/320)100(320/320)XM_025142355.14 979
Table 4 Protein identification (ID) and related information involved in homologous alignment
Fig. 4 Tissue expression level of two transcriptional spliceosomes of chicken GNAS geneDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level, and different uppercase letters above bars indicate highly significant differences at the 0.01 probability level.
[1]   TURAN S, THIELE S, TAFAJ O, et al. Evidence of hormone resistance in a pseudo-pseudohypoparathyroidism patient with a novel paternal mutation in GNAS. Bone, 2015,71:53-57.
[2]   HAHN S, FREY U H, SIFFERT W, et al. The CC genotype of the GNAS T393C polymorphism is associated with obesity and insulin resistance in women with polycystic ovary syndrome. European Journal of Endocrinology, 2006,155(5):763-770.
[3]   RODRIGUEZ C I, SETALURI V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Archives of Biochemistry & Biophysics, 2014,563:22-27.
[4]   PLAGGE A, KELSEY G, GERMAIN-LEE E L. Physio-logical functions of the imprinted Gnas locus and its protein variants Gαs and XLαs in human and mouse. Journal of Endocrinology, 2008,196(2):193-214.
[5]   CRANE J L, SHAMBLOTT M J, AXELMAN J, et al. Imprinting status of Gαs, NESP55, and XLαs in cell cultures derived from human embryonic germ cells: GNAS imprinting in human embryonic germ cells. Clinical & Translational Science, 2009,2(5):355-360.
[6]   PETERS J, WILLIAMSON C M. Control of imprinting at the Gnas cluster. Epigenetics, 2007,2(4):207-213.
[7]   KEHLENBACH R H, MATTHEY J, HUTTNER W B. XLαs is a new type of G protein. Nature, 1994,372(22):804-809.
[8]   ABRAMOWITZ J, GRENET D, BIMBAUMER M, et al. XLαs, the extra-long form of the α-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. PNAS, 2004,101(22):8366-8371.
[9]   王欢欢,陈美玲,楼立峰,等.鸡GNAS基因启动子突变及其与肤色性状的相关性.畜牧兽医学报,2016,47(12):2354-2361.
WANG H H, CHEN M L, LOU L F, et al. GNAS gene promoter mutation in chicken and the correlation with skin color traits. Acta Veterinaria et Zootechnica Sinica, 2016,47(12):2354-2361. (in Chinese with English abstract)
[10]   AST G. How did alternative splicing evolve? Nature Reviews Genetics, 2004,5(10):773-782.
[11]   WANG E T, SANDBERG R, LUO S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008,456:470-476.
[12]   GRABOWSKI P J, BLACK D L. Alternative RNA splicing in the nervous system. Progress in Neurobiology, 2001,65(3):289-308.
[13]   MARKOVIC D, CHALLISS R A. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cellular and Molecular Life Sciences, 2009,66:3337-3352.
[14]   IACONO M, MIGNONE F, PESOLE G. uAUG and uORFs in human and rodent 5′ untranslated mRNAs. Gene, 2005,349:97-105.
[15]   JI Z, TIAN B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One, 2009,4(12):e8419.
[16]   SWAROOP A, AGARWAL N, GRUEN J R, et al. Differential expression of novel Gsα signal transduction protein cDNA species. Nucleic Acids Research, 1991,19(17):4725-4729.
[17]   FAGERBERG L, HALLSTROM B M, OKSVOLD P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics, 2014,13(2):397-406.
[18]   YUE F, CHENG Y, BRESCHI A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014,515(7527):355-364.
[19]   贾胜军.鸡皮肤切伤无疤痕组织愈合过程的组织学观察.江苏,扬州:扬州大学,2015.
JIA S J. Histological observation of chicken wounded skin healing process without scar tissue. Yangzhou, Jiangsu: Yangzhou University, 2015. (in Chinese with English abstract)
[20]   FAUSTINO N A, COPPER T A. Pre-mRNA splicing and human disease. Genes & Development, 2003,17:419-437.
[21]   李焕.猪多能干细胞中LAMININ基因表达谱的分析及其可变剪切体的分子克隆.陕西,杨凌:西北农林科技大学,2017.
LI H. Analysis of LAMININ expression pattern in piPSCs and molecular cloning of an alternative splicing. Yanglin, Shaanxi: Northwest A & F University, 2017. (in Chinese with English abstract)
[1] Yan SHUI,Zhengbing GUAN,Junxian YE,Yonghong SHI,Guofeng LIU,Zenghong XU. Efficient extracellular expression and antimicrobial activity of Procambarus clarkii invertebrate-type lysozyme in Pichia pastoris[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 526-532.
[2] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.
[3] Fangfang YANG,Jiahui LI,Sainan ZHANG,Zhen WANG,Zhiyin LIAO,Shoufeng WANG. Secretory expression of recombinant human acetylcholinesterase gene in Pichia pastoris and evaluation of its sensitivity to pesticides[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 317-324.
[4] Huanhuan WANG,Lei ZHANG,Ying GE,Dandan SONG,Lifeng LOU,Xuedong ZHANG. Effect of c.362277T C mutation on the expression of luciferase in chicken GNAS gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 237-242.
[5] Pengjie WANG,Chuan YUE,Di CHEN,Yucheng ZHENG,Zhilin ZHENG,Yi LIN,Jiangfan YANG,Naixing YE. Isolation and expression analysis of CsWRKY6, CsWRKY31 and CsWRKY48 genes in tea plant[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 30-38.
[6] Hao ZHENG,Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG,Dawei XUE. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 8-13.
[7] ZHANG Li, LIU Lixia, DAI Hongwei, CHEN Hong, WANG Rui, YUE Binghui. Single nucleotide polymorphism screening and bioinformatics analysis of myostatin gene in Jingning chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 629-637.
[8] MEI Lei, ZHU Ye, XIAO Qinzhi, CHEN Jinhong, ZHU Shuijin. Advances in study on phytochelatin synthase in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 530-538.
[9] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[10] YANG Yimin, PAN Lingtao, ZHUANG Haohan, SUN Hongchao, YANG Yi, CHEN Xueqiu, DU Aifang. Prokaryotic expression of Cryptosporidium parvum mucin CGD5_2060 and its role in adhesion[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 230-236.
[11] ZHENG Qunyan, PAN Xiaoyi, SHEN Jinyu, CHEN Shaobo, XU Yang, XU Ting. Molecular cloning and tissue expression analysis of glutamate dehydrogenase gene from Macrobrachium rosenbergii under MrTV infection stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 639-648.
[12] XU Kangkang, DING Tianbo, YAN Yi, LI Can, YANG Wenjia. Expression analysis of glutathione S-transferase genes in Lasioderma serricorne (Coleoptera: Anobiidae) subjected to CO2-enriched atmosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 599-607.
[13] MU Lin, WANG Wenzhou, ZHAO Bohao, HU Shuaishuai, ZHAO Bin, CHEN Yang, WU Xinsheng. Analysis of muscle fiber traits and Myh6 gene expression level in Fujian yellow rabbit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 365-370.
[14] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[15] WANG Jiaqing, DONG Huiming, LI Zhengang, LI Shaoming, WANG Ruonan, FU Yujie.  Cloning and function prediction of full-length cDNA for cathepsin E derived from medaka (Oryzias latipes).[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 183-191.