Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (4): 418-425    DOI: 10.3785/j.issn.1008-9209.2018.10.151
Plant protection     
Differential phosphoproteomic analysis of strawberry in response to Colletotrichum gloeosporioides
Hong YU1(),Jianli YAN1,Jieren QIU1,Shuzhen WANG1,Ya XIN1,Jianxin TONG1,Wenguo LAI1,Xianping FANG1,2()
1. Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
2. Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
Download: HTML   HTML (   PDF(2066KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Label-free based phosphoproteomics technology was used to study the phosphoproteome change of disease-susceptible strawberry cultivar ‘Benihopp’ and resistant cultivar ‘Sweet Charlie’ infected with Colletotrichum gloeosporioides. There were 154 and 173 phosphoproteins showing more than 1.5-fold change in ‘Benihopp’ and ‘Sweet Charlie’, respectively. The differentially expressed phosphoproteins were analyzed by gene ontology annotation and bioinformatics, and we found that, most differentially expressed phosphoproteins were involved in macromolecule complexe formation, and the biological processes of structural localization, stimulus response and signal transduction. Compared with ‘Benihopp’, ‘Sweet Charlie’ may specifically own two motif types of S*Y and T*F of differentially expressed phosphorylated peptides, and its plant hormone signal transduction pathway and carbon fixation pathway had higher levels of phosphorylation. The result is of great benefit to further deeply reveal the molecular mechanisms of plant-pathogen interactions and the breeding of pathogen-resistant strawberry cultivars.



Key wordsstrawberry      Colletotrichum gloeosporioides      phosphoproteomics      ‘Benihopp’      ‘Sweet Charlie’     
Received: 15 October 2018      Published: 17 September 2019
CLC:  S 668.4  
Corresponding Authors: Xianping FANG     E-mail: 340292062@qq.com;fxpbio@163.com
Cite this article:

Hong YU, Jianli YAN, Jieren QIU, Shuzhen WANG, Ya XIN, Jianxin TONG, Wenguo LAI, Xianping FANG. Differential phosphoproteomic analysis of strawberry in response to Colletotrichum gloeosporioides. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 418-425.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.10.151     OR     http://www.zjujournals.com/agr/Y2019/V45/I4/418


草莓响应炭疽菌侵染的差异磷酸化蛋白质组学分析

以不同炭疽病抗性的草莓品种‘红颊’和‘甜查理’的茎组织为试验材料,采用非标记定量磷酸化蛋白质组学技术分析其在炭疽菌侵染胁迫后磷酸化蛋白组的变化。结果表明,‘红颊’和‘甜查理’中分别有154个和173个磷酸化蛋白在病菌侵染后发生了1.5倍以上的差异表达。功能注释归类分析发现,大部分差异磷酸化蛋白参与了大分子复合体形成及结构定位、刺激应答和信号转导等生物学过程。生物信息学分析进一步表明,相对于易感品种‘红颊’,高抗品种‘甜查理’差异磷酸化蛋白特异性表现出S*Y和T*F 2种保守结构域类型,且植物激素信号传导途径和碳固定途径都发生了更高程度的磷酸化。本研究结果揭示出,这些信号通路在防御病菌入侵过程中发挥了重要作用,为后续深入揭示草莓-炭疽病菌互作分子机制及草莓抗病新品种选育奠定了宝贵的理论研究基础。


关键词: 草莓,  胶孢炭疽菌,  磷酸化蛋白质组学,  ‘红颊’,  ‘甜查理’ 
Fig. 1 Symptom induced by mock-infection and C. gloeosporioides infection in disease-susceptible strawberry cultivar ‘Benihopp’ and resistant cultivar ‘Sweet Charlie’
Fig. 2 Distribution chart of identified phosphorylation sites

草莓品种

Strawberry cultivar

差异倍数

Fold change

上调肽段数

Number of up-regulated peptides

下调肽段数

Number of down-regulated peptides

‘红颊’

‘Benihopp’

≥1.5或≤0.667 86 68
≥3.0或≤0.333 15 9

‘甜查理’

‘Sweet Charlie’

≥1.5或≤0.667 126 47
≥3.0或≤0.333 22 15
Table 1 Summary of differentially expressed phosphorylated peptides
Fig. 3 Motif analysis of differentially expressed phosphorylated peptides in ‘Benihopp’ (A) and ‘Sweet Charlie’ (B)
Fig. 4 GO functional category analysis of differentially expressed phosphorylated proteins
Fig. 5 KEGG pathway enrichment analysis of differentially expressed phosphorylated proteins in ‘Benihopp’ (A) and ‘Sweet Charlie’ (B)
[1]   DENOYES-ROTHAN B , GUéRIN G , DéLYE C , et al . Genetic diversity and pathogenic variability among isolates of Colletotrichum species from strawberry. Phytopathology, 2003,93(2):219-228.
[2]   CASADO-DíAZ A , ENCINAS-VILLAREJO S , DE LOS SANTOS B , et al . Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 2006,128(4):633-650.
[3]   GUIDARELLI M , CARBONE F , MOURGUES F , et al . Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathology, 2011,60(4):685-697.
[4]   FANG X P , CHEN J P , DAI L Y , et al . Proteomic dissection of plant responses to various pathogens. Proteomics, 2015,15(9):1525-1543.
[5]   张艺萍,瞿素萍,杨秀梅,等 .百合抗病无性系抗枯萎病的蛋白质组学分析.园艺学报,2018,45(3):530-540.
ZHANG Y P , QU S P , YANG X M , et al . Proteomics analysis of lily blight disease-resistant clones. Acta Horticulturae Sinica, 2018,45(3):530-540. (in Chinese with English abstract)
[6]   YAO Y A , WANG J , MA X , et al . Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. Journal of Experimental Botany, 2012,63(14):5155-5170.
[7]   MUKHERJEE A K , CARP M J , ZUCHMAN R , et al . Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola . Journal of Proteomics, 2010,73(4):709-720.
[8]   FANG X P , CHEN W Y , XIN Y , et al . Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae . Journal of Proteomics, 2012,75(13):4074-4090.
[9]   MANN M , JENSEN O N . Proteomic analysis of post-translational modifications. Nature Biotechnology, 2003,21(3):255-261.
[10]   PAWSON T , SCOTT J D . Signaling through scaffold, anchoring, and adaptor proteins. Science, 1997,278(5346):2075-2080.
[11]   ZHONG X T , WANG Z Q , XIAO R Y , et al . Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. Journal of Virology, 2017,91(16):e00300-e00317.
[12]   GURUSAMY C , CHRISTOF R . Efficient solubilization buffers for two-dimensional gel electrophoresis of acidic and basic proteins extracted from wheat seeds. Biochimica et Biophysica Acta, 2006,1764(4):641-644.
[13]   MANN M , ONG S E, GRONBORG M , et al . Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology, 2002,20(6):261-268.
[14]   VU L D, STES E , VAN B M, et al . Up-to-date workflow for plant (phospho)proteomics identifies differential drought-responsive phosphorylation events in maize leaves. Journal of Proteome Research, 2016,15(12):4304-4317.
[15]   IMAMI K , SUGIYAMA N , KYONO Y , et al . Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column. Analytical Sciences, 2008,24(1):161-166.
[16]   BENSCHOP J J , MOHAMMED S , FLAHERTY M , et al . Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis . Molecular & Cellular Proteomics, 2007,6(7):1198-1214.
[17]   LI H , WONG W S , ZHU L , et al . Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics, 2009,9(6):1646-1661.
[18]   XUE L , WANG P C , WANG L S , et al . Quantitative measurement of phosphoproteome response to osmotic stress in Arabidopsis based on library-assisted extracted ion chromatogram (LAXIC). Molecular & Cellular Proteomics, 2013,12(8):2354-2369.
[19]   ZHANG H T , ZHOU H J , BERKE L , et al . Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Molecular & Cellular Proteomics, 2013,12(5):1158-1169.
[20]   ZHANG Y , WOLF-YADLIN A , ROSS P L , et al . Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Molecular & Cellular Proteomics, 2005,4(9):1240-1250.
[21]   SUGIYAMA N , NAKAGAMI H , MOCHIDA K , et al . Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis . Molecular Systems Biology, 2008,4(1):1-7.
[22]   QIU J H , HOU Y X , TONG X H , et al . Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). Plant Molecular Biology, 2016,90(3):249-265.
[23]   REINDERS J , SICKMANN A . State-of-the-art in phospho-proteomics. Proteomics, 2005,5(16):4052-4061.
[24]   VAN-WIJK K J , FRISO G , WALTHER D , et al . Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. The Plant Cell, 2014,26(6):2367-2389.
[25]   RAE G M, UVERSKY V N , DAVID K , et al . DRM1 and DRM2 expression regulation: potential role of splice variants in response to stress and environmental factors in Arabidopsis . Molecular Genetics and Genomics, 2014,289(3):317-332.
[26]   KONG F J , OYANAGU A , KOMATSU S , et al . Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochimica et Biophysica Acta-Proteins and Proteomics, 2010,1804(1):124-136.
[27]   MA F S , LIU Z D , WANG T W , et al . Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant Cell and Environment, 2010,33(10):1682-1696.
[1] Attached Table S1 Download
[1] Ya XIN,Xianping FANG,Shuzhen WANG,Jianxin TONG,Wenguo LAI,Jianrong WANG,Hong YU. Comparison of simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) markers for genetic diversity analysis in strawberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 278-287.
[2] GAO Li-ping, WANG Jun*, CUI Shao-qing. Evaluation of fresh juice of strawberries at different degrees of ripeness using electronic nose and electronic tongue[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 715-724.