Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (5): 619-625    DOI: 10.3785/j.issn.1008-9209.2018.09.191
Animal sciences & veterinary medicine     
Construction of eukaryotic expression vector of human forkhead box class O6 and its effect on glioma cell survival
Xiaoxia GONG(),Chao LI,Xiyue CAO,Chengcheng YANG,Chao HUANG()
Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
Download: HTML   HTML (   PDF(3443KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To construct the eukaryotic expression vector of human forkhead box class O6 (FOXO6) and explore the effect of FOXO6 on glioma cell survival, we took the cDNA from glioma cell line U251 as a template, and the fragment of FOXO6 gene was amplified by polymerase chain reaction (PCR) and ligated with pRK5-myc vector to construct pRK5-myc-FOXO6 recombinant plasmid. Then, the pRK5-myc-FOXO6 recombinant plasmid and vacant vectors were transfected into U251 cells. The cell viability and the expression of transcription factor peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were evaluated by 4’,6-diamidino-2-phenylindole (DAPI) staining and quantitative real-time PCR (qPCR), respectively. The result showed that the recombinant plasmid pRK5-myc-FOXO6 was successfully constructed by double enzyme digestion and DNA sequencing. The transcriptional level of PGC-1α in U251 cells showed a significant decrease after the FOXO6 transfection, and obvious apoptosis occurred after the FOXO6 overexpression. In conclusion, the eukaryotic expression vector of FOXO6 is constructed successfully. In vitro experiments suggest that FOXO6 may inhibit the energy metabolism and anti-oxidation process of U251 cells by inhibiting the expression of PGC-1α, and then induce the apoptosis of U251 cells. These results provide evidences for further in-depth studies exploring the mechanism and target of FOXO6 on glioma.



Key wordshuman forkhead box class O6      glioma      peroxisome proliferator-activated receptor γ coactivator-1α     
Received: 19 September 2018      Published: 05 December 2019
CLC:  Q 78  
Corresponding Authors: Chao HUANG     E-mail: gongxx0601@163.com;huangchao@sicau.edu.cn
Cite this article:

Xiaoxia GONG,Chao LI,Xiyue CAO,Chengcheng YANG,Chao HUANG. Construction of eukaryotic expression vector of human forkhead box class O6 and its effect on glioma cell survival. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 619-625.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.09.191     OR     http://www.zjujournals.com/agr/Y2019/V45/I5/619


人叉头转录因子O亚型6真核表达载体的构建及其对胶质瘤细胞存活的影响

构建人叉头转录因子O亚型6(forkhead box class O6, FOXO6)基因的真核表达载体,并探究FOXO6对胶质瘤细胞存活的影响。以人神经胶质瘤细胞U251的cDNA为模板,利用聚合酶链式反应(polymerase chain reaction, PCR)方法扩增FOXO6基因片段,并将其与pRK5-myc载体连接,构建pRK5-myc-FOXO6重组质粒;将构建成功的重组质粒和空载体分别转染至U251细胞中进行表达,通过实时荧光定量PCR(quantitative real-time PCR, qPCR)和4’,6-二脒基-2-苯基吲哚(4’, 6-diamidino-2-phenylindole, DAPI)染色法分别检测FOXO6对U251细胞中转录因子过氧化物酶体增殖物激活受体γ共激活因子1α(peroxisome proliferator-activated receptor γ coactivator-1α,PGC-1α)转录水平的影响及其对U251细胞存活的影响。经双酶切鉴定及DNA测序表明:pRK5-myc-FOXO6重组质粒构建成功;FOXO6转染组中的PGC-1α转录水平出现了明显的下降,并出现了明显的细胞凋亡现象。上述结果显示,pRK5-myc-FOXO6重组质粒构建成功,体外实验暗示FOXO6可能通过抑制PGC-1α的表达来抑制U251细胞的能量代谢及抗氧化过程,进而诱导U251细胞的凋亡,这为后续深入研究FOXO6在胶质瘤上的作用机制和靶点奠定了基础。


关键词: 人叉头转录因子O亚型6,  胶质瘤,  过氧化物酶体增殖物激活受体γ共激活因子1α 
Fig. 1 Agarose gel electrophoresis of PCR productsM: DL5000 DNA marker; A-C: Amplification products of PCR.
Fig. 2 Electrophoretogram of recombinant plasmid pRK5-myc-FOXO6 using double enzyme digestionM: DL5000 DNA marker; A-B: Non-positive colonies; C-F: Positive colonies.
Fig. 3 Sequencing results of recombinant plasmid pRK5-myc-FOXO6
Fig. 4 Detection of pRK5-myc-FOXO6 protein expression by Western blotting1: Transfection group of pRK5-myc; 2: Transfection group of pRK5-myc-FOXO6. n=3.
Fig. 5 Apoptotic detection of U251 cells by DAPI stainingThe apoptotic nuclei are shown at the arrows; n=4.
Fig. 6 Cell apoptosis rate in empty group and transfected pRK5-myc-FOXO6 recombinant plasmid groupDouble asterisks (**) indicate highly significant differences at the 0.01 probability level; n=4.
Fig. 7 Expression of PGC-1α detected by qPCRSingle asterisk (*) indicates significant differences at the 0.05 probability level; n=4.
[1]   MONSALVE M, OLMOS Y. The complex biology of FOXO. Current Drug Targets, 2011,12(9):1322-1350.
[2]   KLOTZ L O, SANCHEZ-RAMOS C, PRIETO-ARROYO I, et al. Redox regulation of FoxO transcription factors. Redox Biology, 2015,6:51-72.
[3]   KIM D H, PERDOMO G, ZHANG T, et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes, 2011,60(11):2763-2774.
[4]   JACOBS F M J, HEIDE L P VAN DER, WIJCHERS P J E C, et al. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. The Journal of Biological Chemistry, 2003,278(38):35959-35967.
[5]   KIM D H, ZHANG T, LEE S, et al. FoxO6 in glucose metabolism. Journal of Diabetes, 2013,5(3):233-240.
[6]   LI Q Y, CUI L, DU Z D, et al. FOXO6 promotes gastric cancer cell tumorigenicity via upregulation of C-myc. FEBS Letters, 2013,587(14):2105-2111.
[7]   HU H J, ZHANG L G, WANG Z H, et al. FoxO6 inhibits cell proliferation in lung carcinoma through up-regulation of USP7. Molecular Medicine Reports, 2015,12(1):575-580.
[8]   CHEN H Y, CHEN Y M, WU J, et al. Expression of FOXO6 is associated with oxidative stress level and predicts the prognosis in hepatocellular cancer: a comparative study. Medicine, 2016,95(21):e3708.
[9]   HU J, CAO X Y, PANG D J, et al. Tumor grade related expression of neuroglobin is negatively regulated by PPARγ and confers antioxidant activity in glioma progression. Redox Biology, 2017,12:682-689.
[10]   COYLE J T, PUTTFARCKEN P. Oxidative stress, glutamate, and neurodegenerative disorders. Science,1993,262(5134):689-695.
[11]   SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress. Current Biology, 2014,24(10):R453-R462.
[12]   WU Z, PUIGSERVER P, ANDERSSON U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999,98(1):115-124.
[13]   LIANG H Y, WARD W F. PGC-1α: a key regulator of energy metabolism. Advances in Physiology Education, 2006,30(4):145-151.
[14]   ST-PIERRE J, DRORI S, ULDRY M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006,127(2):397-408.
[15]   李博,田瑞霞,杨卫景,等.PGC-1α的功能与代谢病.中国生物化学与分子生物学报,2011,27(11):1013-1018.
LI B, TIAN R X, YANG W J, et al. PGC-1α functions and its relation to metabolic diseases. Chinese Journal of Biochemistry and Molecular Biology, 2011,27(11):1013-1018. (in Chinese with English abstract)
[16]   VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 2006,160(1):1-40.
[17]   叶林峰.SIRT1/PGC-1α途径在帕金森病中的抗氧化应激作用.医学综述,2011,17(8):1166-1168.
YE L F. The antioxidative role of SIRT1/PGC-1α pathway in Parkinson disease. Medical Recapitulate, 2011,17(8):1166-1168. (in Chinese with English abstract)
[18]   周园媛,王战建.FoxO1与糖尿病的关系.中华临床医师杂志:电子版,2013,7(16):98-100.
ZHOU Y Y, WANG Z J. Relationship between FoxO1 and diabetes. Chinese Journal of Clinicians: Electronic Edition, 2013,7(16):98-100. (in Chinese)
[1] Yan SHUI,Zhengbing GUAN,Junxian YE,Yonghong SHI,Guofeng LIU,Zenghong XU. Efficient extracellular expression and antimicrobial activity of Procambarus clarkii invertebrate-type lysozyme in Pichia pastoris[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 526-532.
[2] Fangfang YANG,Jiahui LI,Sainan ZHANG,Zhen WANG,Zhiyin LIAO,Shoufeng WANG. Secretory expression of recombinant human acetylcholinesterase gene in Pichia pastoris and evaluation of its sensitivity to pesticides[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 317-324.
[3] Yuanyuan ZHANG,Yan YAN,Yulan JIN,Weiren DONG,Jiyong ZHOU. Straightforward method for preparing a user-customizable DNA marker by improved overlap extension polymerase chain reaction.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 272-277.
[4] Pengjie WANG,Chuan YUE,Di CHEN,Yucheng ZHENG,Zhilin ZHENG,Yi LIN,Jiangfan YANG,Naixing YE. Isolation and expression analysis of CsWRKY6, CsWRKY31 and CsWRKY48 genes in tea plant[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 30-38.
[5] ZHANG Qiaoyan, SHAO Fengjin, YU Xiangqian, TAN Xun. Prokaryotic expression of extracellular domain of avian CD133 protein and preparation of polyclonal antibody against CD133[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 743-747.
[6] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[7] YU Daobing, CHENG Xuesong, WANG Qun, SHI Yanke, ZHANG Xin. Site-directed mutagenesis of Aspergillus niger phytase gene and its cell-surface display on Komagataella phaffii[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 10-20.
[8] WANG Jiaqing, DONG Huiming, LI Zhengang, LI Shaoming, WANG Ruonan, FU Yujie.  Cloning and function prediction of full-length cDNA for cathepsin E derived from medaka (Oryzias latipes).[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 183-191.
[9] WANG Jiaqing, DONG Huiming, LI Zhengang, LI Shaoming, WANG Ruonan, FU Yujie. Cloning and function prediction of full-length cDNA for cathepsin E derived from medaka (Oryzias latipes)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 0, (): 1-.
[10] LIU Huichun, MA Guangying, ZHU Kaiyuan, ZOU Qingcheng, ZHOU Jianghua, TIAN Danqing . Functional analysis of stress-related transcription factor gene PsDREB from Paeonia suffruticosa[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 679-686.
[11] CHEN Renliang, LI Xiao, LONG Ying, ZHANG Lei, YAN Junjie, HUANG Qianhui, XIONG Hongmin, XIE Baogui. Analysis on the co-expression of hydrophobin Fv-Hyd1 and its potential transcription factor Fv-Rtg3 in Flammulina velutipes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 313-320.
[12] JIANG Ming, LIU Qing’e, ZHANG Yanru, ZHU Qi, GONG Xiu, YU Keke, ZHOU Xiuqian. Cloning and expression of a C3H-type zinc finger protein gene BoCCCH2 from Brassica oleracea var. italica.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 143-149.
[13] LIU Yuan, LIN Manman, ZHANG Xiao, XU Chongxin, JIAO Linxia, ZHONG Jianfeng, WU Aihua, LIU Xianjin. Applications of mutagenesis methods on affinity maturation of antibodies in vitro[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 1-7.
[14] Shi Lili, Jiang Caiying, Yu Wei, Chen Chen, Jiang Lei, Gong Chengjian, Tong Fudan. Influence of BmNPV orf98 on DNA replication,transcription and virus package of Bombyx mori nucleopolyhedrovirus.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 623-630.
[15] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.