Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2018, Vol. 44 Issue (3): 283-293    DOI: 10.3785/j.issn.1008-9209.2017.12.281
    
Research progresses on functional roles and regulation mechanisms of nutrient element transporters in plants
CHEN Di1, PAN Weihuai2, ZHOU Zaicai1, YAN Xu1, PAN Jianwei3*
1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 2. College of Life Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China; 3. School of Life Sciences, Lanzhou University, Lanzhou 730000, China
Download: HTML (   PDF(2374KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Essential nutrient elements for plants, including nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn), are involved in regulation of many physiological and biochemical processes in plants, which are critical factors directly determining yield and quality of crops. However, excessive subcellular accumulation of these essential nutrient elements will be toxic for plant cells or the whole plant. Thus, uptake and transport processes of these nutrients must be tightly regulated at the cellular level. Focused on Arabidopsis thaliana and Oryza sativa, this review briefly summarized the types, physical and chemical properties of nutrient element transporters, and elaborated their biological functions and action mechanisms in higher plants, including N transporter families (NPF, NRT2, CLC, SLAC/SLAH, and AMT), P transporter families (PHT1, PHT2, PHT3, PHT4, and PHT5), K transporter families (KT/HAK/KUP, HKT, CHX, and KEA), and Zn transporter families (ZIP, CDF, and P1B-type ATPase). Endocytosis from the plasma membrane (PM) is an important route for uptake of extracellular materials and regulation of PM-resident receptors or transporters, so we introduced potential roles of transporter endocytosis in uptake and transport of nutrient elements in plant cells. In the end, we made prospects of future studies on functional roles and regulation mechanisms of transporters, providing new ideas and strategies for efficient utilization of nutrients and genetic improvement of quality in crops.



Key wordsplants      essential elements      transporters      endocytosis      function     
Published: 29 June 2018
CLC:  Q 943  
Cite this article:

CHEN Di, PAN Weihuai, ZHOU Zaicai, YAN Xu, PAN Jianwei. Research progresses on functional roles and regulation mechanisms of nutrient element transporters in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 283-293.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2017.12.281     OR     http://www.zjujournals.com/agr/Y2018/V44/I3/283


植物营养元素运输载体的功能及其调控机制研究进展

植物营养必需元素包括氮(N)、磷(P)、钾(K)和锌(Zn)等,它们参与调控植物许多生理、生化过程,是直接影响作物产量和品质的关键因子,但其过度积累也会对植物细胞或个体造成毒害。因此,这些营养元素的吸收和转运过程在细胞水平上必须被严格调控。本文以模式植物拟南芥和水稻为对象,简要总结了高等植物中这些元素转运蛋白的类型及理化性质,阐述了其生物学功能及其作用机制,如N转运蛋白家族(NPF、NRT2、CLC、SLAC/SLAH和AMTs)、P转运蛋白家族(PHT1、PHT2、PHT3、PHT4和PHT5)、K转运蛋白家族(KT/HAK/KUP、HKT、CHX和KEA)和Zn转运蛋白家族(ZIP、CDF和P1B型ATP酶)。由于细胞质膜内吞是胞外物质吸收、质膜受体或转运蛋白丰度调控的重要途径,因此,本文还分析了转运蛋白内吞调控在植物细胞营养元素吸收与转运中的功能。最后,对未来转运蛋白的功能及其调控机制研究进行了展望,为作物养分高效利用和品质遗传改良提供新的研究思路和策略。


关键词: 植物,  必需元素,  转运蛋白,  内吞,  功能 
[1] ZHANG Chi, LIU Dandan, LIU Jianzhong. Biological functions and action mechanisms of J-domain proteins in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 275-282.
[2] ZHENG Youxiu, WANG Chao, YAO Jingyi, LU Jianjun.

Effects of Clostridium butyricum on serum biochemical indices, antioxidant function and intestinal microbiota in weaned piglets [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 190-198.

[3] FENG Jiayin, ZHU Min, HE Yan. Key microbial functional genes and their diversity involved in soil typical reduction processes: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 663-675.
[4] FAN Lihua, MO Hongfei, ZHANG Xiaofeng, SHUAI Jiangbing, CHEN Qing.  Identification of swine- specific microbial genetic markers using competitive DNA hybridization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 163-172.
[5] WANG Jiaqing, DONG Huiming, LI Zhengang, LI Shaoming, WANG Ruonan, FU Yujie.  Cloning and function prediction of full-length cDNA for cathepsin E derived from medaka (Oryzias latipes).[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 183-191.
[6] ZHAI Rongrong, YU Peng, YE Shenghai, WANG Junmei, WU Mingguo, LIN Jianrong, ZHU Guofu, ZHANG Xiaoming. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonica rice cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 565-.
[7] BO Xiaoyan, MI Wenbao, XU Hao, DONG Jun. Estimating of ecological service value for different wetland types based on multi-source data fusion in Ningxia Plain.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 228-244.
[8] HOU Ling, SHEN Xian, CHEN Lin, KIM Eunhye, WU Yuanyuan, TU Youying. Optimization on alkaline and enzymatic extraction of tea flower protein and its functional properties[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 442-450.
[9] Zhang Yuyang1, Wang Junfeng1, Sha Zhipeng1, Guan Fachun1,2*, Duan Jing1. Weeds biodiversity and maize growth in agro-pastoral integration system.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 638-646.
[10] Li Xiaobai, Xiang Lin, Luo Jie, Qin Dehui, Sun Chongbo. Analysis of microsatellite and single nucleotide polymorphism within transcriptomic database in Cymbidium ensifolium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 463-472.
[11] Zhang Zhi, Hu Xiaohui, Zou Zhirong* . Prediction of grey mould disease from greenhouse tomato based on radical basis function neural network.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 197-202.
[12] Ge Yansong, Cao Changyu, Wang Lili, Li Nan, Jiang Xiuqing, Li Jinlong*. Analysis of selenocysteine insertion sequence element, structures and functions and expression profiles of selenoprotein T  in chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 9-15.
[13] ZHOU Guoyan, HU Wangxiong, XU Jianhong*, XUE Qingzhong*. Integrating multiple “omics”  analysis for plant metabolites and their functions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 237-245.
[14] . Effects of drought stress on leaf photosynthetic physiological charateristics in sweet cherry seedlings grafted on four different rootstocks[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 585-592.
[15] WU Qingling1, XIA Xiaolan2, YE Jing2, JIANG Lei2, MIU Kepai3, DING Bingyang2. Plant diversity and ecosystem health assessment of Sanyang wetland in Wenzhou[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 421-428.