Please wait a minute...

Current Issue

, Volume 15 Issue 4 Previous Issue    Next Issue
Articles
Development of genic SSR markers from transcriptome sequencing of pear buds
Xiao-yan Yue, Guo-qin Liu, Yu Zong, Yuan-wen Teng, Dan-ying Cai
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 303-312.   https://doi.org/10.1631/jzus.B1300240
Abstract   PDF (0KB)
A total of 8375 genic simple sequence repeat (SSR) loci were discovered from a unigene set assembled from 116282 transcriptomic unigenes in this study. Dinucleotide repeat motifs were the most common with a frequency of 65.11%, followed by trinucleotide (32.81%). A total of 4100 primer pairs were designed from the SSR loci. Of these, 343 primer pairs (repeat length 鈮?5 bp) were synthesized with an M13 tail and tested for stable amplification and polymorphism in four Pyrus accessions. After the preliminary test, 104 polymorphic genic SSR markers were developed; dinucleotide and trinucleotide repeats represented 97.11% (101) of these. Twenty-eight polymorphic genic SSR markers were selected randomly to further validate genetic diversity among 28 Pyrus accessions. These markers displayed a high level of polymorphism. The number of alleles at these SSR loci ranged from 2 to 17, with a mean of 9.43 alleles per locus, and the polymorphism information content (PIC) values ranged from 0.26 to 0.91. The UPGMA (unweighted pair-group method with arithmetic average) cluster analysis grouped the 28 Pyrus accessions into two groups: Oriental pears and Occidental pears, which are congruent to the traditional taxonomy, demonstrating their effectiveness in analyzing Pyrus phylogenetic relationships, enriching rare Pyrus EST-SSR resources, and confirming the potential value of a pear transcriptome database for the development of new SSR markers.
Aroma changes of black tea prepared from methyl jasmonate treated tea plants
Jiang Shi, Li Wang, Cheng-ying Ma, Hai-peng Lv, Zong-mao Chen, Zhi Lin
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 313-321.   https://doi.org/10.1631/jzus.B1300238
Abstract   PDF (0KB)
Methyl jasmonate (MeJA) was widely applied in promoting food quality. Aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (P<0.01); however, the gene expression of β-glucosidase was downregulated to a half level. In general, the aroma quality of the MeJA-treated black tea was clearly improved.
Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR
Lie-zhong Chen, Yan-li Li, Yun-long Yu
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 322-332.   https://doi.org/10.1631/jzus.B1300175
Abstract   PDF (0KB)
Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened.
Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus
Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 333-342.   https://doi.org/10.1631/jzus.B1300149
Abstract   PDF (0KB)
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.
Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design
Leticia I. Ramírez-Cavazos, Charles Junghanns, Rakesh Nair, Diana L. Cárdenas-Chávez, Carlos Hernández-Luna, Spiros N. Agathos, Roberto Parra
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 343-352.   https://doi.org/10.1631/jzus.B1300246
Abstract   PDF (0KB)
The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143000 IU/L (2,2\'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers.
Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system
Xiang-ping Sun, Peng Lu, Tao Jiang, Frank Schuchardt, Guo-xue Li
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 353-364.   https://doi.org/10.1631/jzus.B13a0271
Abstract   PDF (0KB)
Mismanagement of the composting process can result in emissions of CH4, N2O, and NH3, which have caused severe environmental problems. This study was aimed at determining whether CH4, N2O, and NH3 emissions from composting are affected by bulking agents during rapid composting of pig manure from the Chinese Ganqinfen system. Three bulking agents, corn stalks, spent mushroom compost, and sawdust, were used in composting with pig manure in 60 L reactors with forced aeration for more than a month. Gas emissions were measured continuously, and detailed gas emission patterns were obtained. Concentrations of NH3 and N2O from the composting pig manure mixed with corn stalks or sawdust were higher than those from the spent mushroom compost treatment, especially the sawdust treatment, which had the highest total nitrogen loss among the three runs. Most of the nitrogen was lost in the form of NH3, which accounts for 11.16% to 35.69% of the initial nitrogen. One-way analysis of variance for NH3 emission showed no significant differences between the corn stalk and sawdust treatments, but a significant difference was noted between the spent mushroom compost and sawdust treatments. The introduction of sawdust reduced CH4 emission more than the corn stalks and spent mushroom compost. However, there were no significant differences among the three runs for total carbon loss. All treatments were matured after 30 d.
Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management
Yu-yan Wang, Yan-yan Wei, Lan-xue Dong, Ling-li Lu, Ying Feng, Jie Zhang, Feng-shan Pan, Xiao-e Yang
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 365-374.   https://doi.org/10.1631/jzus.B1300263
Abstract   PDF (0KB)
Zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.
Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic modul
Ying ZHU, Yi ZHENG, Yuan-yuan SHEN, Xin CHEN, Xin-yu Zhang, Hao-ming LIN,Yan-rong GUO, Tian-fu WANG,
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 375-81.   https://doi.org/10.1631/jzus.B1300121
Abstract   PDF (0KB)
Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli
Ying Zhu, Yi Zheng, Yuan-yuan Shen, Xin Chen, Xin-yu Zhang, Hao-ming Lin, Yan-rong Guo, Tian-fu Wang, Si-ping Chen
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 375-381.   https://doi.org/10.1631/jzus.B1300121
Abstract   PDF (0KB)
The process of liver fibrosis changes the rheological properties of liver tissue. This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli. Here two viscoelastic models, the Zener model and Voigt model, were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage. The results demonstrate that moderate fibrosis (≤F2) has a good correlation with liver viscoelasticity. The mean Zener elasticity E1 increases from (0.452±0.094) kPa (F0) to (1.311±0.717) kPa (F2), while the mean Voigt elasticity E increases from (0.618±0.089) kPa (F0) to (1.701±0.844) kPa (F2). The mean Zener viscosity increases from (3.499±0.186) Pa·s (F0) to (4.947±1.811) Pa·s (F2) and the mean Voigt viscosity increases from (3.379±0.316) Pa·s (F0) to (4.625±1.296) Pa·s (F2). Compared with viscosity, the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used. Therefore, the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.
Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering
Peng-yan Qiao, Fang-fang Li, Li-min Dong, Tao Xu, Qiu-fei Xie
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 382-392.   https://doi.org/10.1631/jzus.B1300132
Abstract   PDF (0KB)
Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering.
A feasibility study of applying cone-beam computed tomography to observe dimensional changes in human alveolar bone
Bei Li, Yao Wang, Jun Li
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 393-398.   https://doi.org/10.1631/jzus.B1300249
Abstract   PDF (0KB)
The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography (CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction. Sixty patients were selected from a CBCT database. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken after implant surgery. A fixed anatomic reference point was used to orient the horizontal slice of the two scans. The alveolar ridge width was measured on the horizontal slice. In each series of CBCT I sagittal slices, the number of slices from the start point to the pulp center of the test tooth was recorded. The tooth length was measured on the sagittal slice. In each series of CBCT II slices, tooth length was measured on a sagittal slice selected based on the number of slices from the start point to the pulp center recorded in CBCT I. Intraobserver reliability, assessed by the intraclass correlation coefficient (ICC), was high. Paired sample t-tests of repeated measurements of both tooth length and alveolar bone width showed no statistically significant differences (P<0.05). This study has proved that projection differences among CBCT scans taken at different time points from one patient can be neglected without affecting the accuracy of millimeter scale measurements. CBCT is a reliable imaging tool for continuously observing dimensional changes in human alveolar bone.
Letters
Effects of EDTA irrigation and water storage on the bonding durability of different adhesive resin cements to intra-radicular dentin
Cai-yun Mao, Jia-jia Zhao, Wei Wang, Xin-hua Gu
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 399-404.   https://doi.org/10.1631/jzus.B1300227
Abstract   PDF (0KB)
One hundred and twenty single-root teeth were selected to evaluate the bonding durability of three different adhesive resin cements to intra-radicular dentin and the effect of ethylenediaminetetraacetic acid (EDTA) irrigation on bonding durability, over six months of water storage. We found that water storage, type of cement, post space pretreatment, and root region were significant factors affecting the push-out bond strength. Water storage reduced the bond strength of RelyX Unicem (RU), especially in the apical region (P<0.05). Super Bond C&B (SB) was stronger than the other two cements, sometimes significantly so. The apical region had the lowest bond strength in all circumstances, although the dif-ference was not always statistically significant. Irri-gation with EDTA improved the bond strengths of Panavia F (PF) and RU significantly in each root region (P<0.05). These results showed that water storage decreased the bonding effectiveness of the adhesive resin cements. Irrigation with EDTA after post space preparation was a valuable procedure, especially when used in conjunction with self-etching adhesive or self-adhesive resin cements.
Phenolic contents and antioxidant capacities of Thai-Makham Pom (Phyllanthus emblica L.) aqueous extracts
Sitthichai Iamsaard, Supatcharee Arun, Jaturon Burawat, Wannisa Sukhorum, Jintanaporn Wattanathorn, Somsak Nualkaew, Bungorn Sripanidkulchai
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 405-408.   https://doi.org/10.1631/jzus.B1300284
Abstract   PDF (0KB)
This study was aimed at determining the amount of the total phenolic contents (TPCs) and to evaluate the antioxidant activities of different extracts (leaves, branches, and barks) of Phyllanthus emblica (PE) L., a traditional medicinal plant that has been recently used as an anti-inflammatory, wound healing, and anti-aging agent. PE leaves, branches, or barks were aqueous-extracted and the amount of the TPC was determined using a Folin-Ciocalteu reagent method. The antioxidant activity of each PE extract was as-sessed using 1,1-diphenyl-2-picrylhydrazyl radical scavenging and ferric reducing antioxidant power (FRAP) methods. Among plant extracts, the PE bark extract possessed the highest TPC. The TPCs of the PE leaves, branches, and barks were (513.83±20.52), (650.50±9.76), and (2196.33±11.02) mg gallic acid equivalent/g dried material, respectively. Interest-ingly, the IC50, which was calculated from 50% inhibition against concentration (µg/ml) plot, of the PE leaf ((7.72±0.25) µg/ml), branch ((6.92±0.22) µg/ml), or bark ((6.54±0.27) µg/ml) extract was lower than that of the ascorbic acid ((8.06±0.01) µg/ml). As calibrated to the standard, the potent reducing power abilities of the PE leaf, branch, and bark extracts were (696.73±78.48), (729.33±36.9), and (966±64.73) mg/g ascorbic acid equivalent, respectively.
14 articles

NoticeMore

Links