Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2016, Vol. 17 Issue (1): 30-42    DOI: 10.1631/jzus.B1500182
Article     
Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells
Xu-wei Luo,Kang Liu,Zhu Chen,Ming Zhao,Xiao-wei Han,Yi-guang Bai,Gang Feng()
Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical College, Nanchong 637000, China
Download: HTML     PDF(1526KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP cells.



Key wordsIntervertebral disc      Degeneration      Growth and differentiation factor-5 (GDF-5)      Adenovirus      Gene therapy      Nucleus pulposus     
Received: 30 July 2015      Published: 01 January 2016
Fund:  Project supported by the National Natural Science Foundation of China(Nos. 81171472, 81201407);the Innovation Team Project of Sichuan Provincial Education Department(No. 13TD0030);the Major Transformation Cultivation Project of Sichuan Provincial Education Department(No. 15CZ0021);the Science and Technology Project of Nanchong City, China(No. 14A0021)
Corresponding Authors: Gang Feng     E-mail: fenggangncch@163.com
Cite this article:

Xu-wei Luo,Kang Liu,Zhu Chen,Ming Zhao,Xiao-wei Han,Yi-guang Bai,Gang Feng. Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(1): 30-42.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1500182     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2016/V17/I1/30

Molecule Primer sequence Product size (bp)
?Collagen II 5'-TCCCAGAACATCACCTACC-3' (sense) 131
? 5'-AACCTGCTATTGCCCTCT-3' (antisense)
?Aggrecan 5'-CGCTACTCGCTGACCTTT-3' (sense) 106
? 5'-GCTCATAGCCTGCTTCGT-3' (antisense)
?β-Actin 5'-GAGCTACGAGCTGCCTGACG-3' (sense) 128
? 5'-GTAGTTTCGTGGATGCCACAG-3' (antisense)
Table 1 Primer sequences used for RT-PCR
Fig. 1 Western blotting results Proteins were electrophoretically separated on 10% criterion separation SDS-polyacrylamide gel on a mini-protean 3 system apparatus. Western blotting was performed with goat anti-GDF-5 polyclonal antibody. (a) Western blotting of GDF-5 recovered from the supernatant of cultured HEK293 cells at the second day post-infection; (b) Western blotting of GDF-5 recovered from the supernatant of NP cells at 21 d post-infection. Lane 1: control group; Lane 2: Ad-GFP group; Lane 3: Ad-GDF-5 group
Fig. 2 Flow cytometry identification result of NP cells
Fig. 3 sGAG/DNA ratio for human NP cells treated with Ad-GDF-5 The sGAG and DNA expression levels were measured in NP cells that were infected with increasing multiplicity of infection (MOI) ratios of Ad-GDF-5. Human NP cells were collected at 3, 7, and 14 d after the primal transduction, and the sGAG and DNA levels were detected using the DMMB colorimetric assay and the Hoechst 33258 DNA quantitation kit, respectively. Data points are presented as mean±SD (n=3). * P<0.05 vs. MOI 50; ** P<0.01 vs. control; ## P<0.01 vs. MOI 25
Fig. 4 Levels of sulfated glycosaminoglycan (sGAG) and hydroxyproline (Hyp) normalized to DNA content in NP cells (a) The sGAG/DNA ratio in NP cells infected by Ad-GDF-5, Ad-GFP, or no adenovirus (BM group); (b) The Hyp/DNA ratio in NP cells infected with Ad-GDF-5, Ad-GFP, or no adenovirus (BM group). Data points are presented as mean±SD (n=3). * P<0.05, ** P<0.01, vs. BM group; # P<0.05, ## P<0.01, vs. Ad-GFP group
Fig. 5 Safranin-O staining (red) of the proteoglycan-rich ECM of human NP cells NP cells were stained at 3, 7, 14, and 21 d after being infected by Ad-GDF-5, Ad-GFP, or no adenovirus (BM group). Scale bar=50 Μm (Note: for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
Fig. 6 Immunostaining of human NP cells for type-II collagen and aggrecan after they were infected by Ad-GDF-5, Ad-GFP, or no adenovirus (BM group) Type-II collagen is stained dark brown (a), and aggrecan is shown by red fluorescent staining (b). Scale bar=50 Μm (Note: for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
Fig. 7 Concentrations of collagen II (Col II) and aggrecan in NP cells at 21th days post-infection by ELISA Data points are presented as mean±SD (n=3). * P<0.05 vs. BM group; # P<0.05 vs. Ad-GFP group
Fig. 8 Gene expression patterns in human NP cells following infection by Ad-GDF-5, Ad-GFP, or no adenovirus (BM group) over 3, 7, 14, and 21 d (a) Collagen II mRNA levels; (b) Aggrecan mRNA levels. Data points are presented as mean±SD (n=6). * P<0.05, ** P<0.01, vs. BM group; # P<0.05, ## P<0.01, vs. Ad-GFP group
Fig. 9 NP cell proliferation after transfection Data points are presented as mean±SD (n=3). ** P<0.01 vs. BM group; ## P<0.01 vs. Ad-GFP group
[1]   Bucher C, Gazdhar A, Benneker LM. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int. 2013, 2013:326828 (Available from: http://dx.doi.org/10.1155/2013/326828)
doi: 10.1155/2013/326828 pmid: 3885261
[2]   Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. Int Orthop. 2007, 31(6):773-781. (Available from: http://dx.doi.org/10.1007/s00264-007-0423-9)
doi: 10.1007/s00264-007-0423-9
[3]   Costello DJ, O'Keeffe GW, Hurley FM. Transplantation of novel human GDF5-expressing CHO cells is neuroprotective in models of Parkinson’s disease. J Cell Mol Med. 2012, 16(10):2451-2460. (Available from: http://dx.doi.org/10.1111/j.1582-4934.2012.01562.x)
doi: 10.1111/j.1582-4934.2012.01562.x pmid: 22436046
[4]   Cui M, Wan Y, Anderson DG. Mouse growth and differentiation factor-5 protein and DNA therapy potentiates intervertebral disc cell aggregation and chondrogenic gene expression. Spine J. 2008, 8(2):287-295. (Available from: http://dx.doi.org/10.1016/j.spinee.2007.05.012)
doi: 10.1016/j.spinee.2007.05.012
[5]   Daans M, Luyten FP, Lories RJ. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann Rheum Dis. 2011, 70(1):208-213. (Available from: http://dx.doi.org/10.1136/ard.2010.134619)
doi: 10.1136/ard.2010.134619
[6]   Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010, 10(1):56-63
[7]   Ellman MB, An HS, Muddasani P. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene. 2008, 420(1):82-89. (Available from: http://dx.doi.org/10.1016/j.gene.2008.04.019)
doi: 10.1016/j.gene.2008.04.019 pmid: 2525607
[8]   Eskola PJ, Lemmel? S, Kjaer P. Genetic association studies in lumbar disc degeneration: a systematic review. PLoS ONE. 2012, 7(11):e49995 (Available from: http://dx.doi.org/10.1371/journal.pone.0049995)
doi: 10.1371/journal.pone.0049995 pmid: 3503778
[9]   Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883(2):173-177. (Available from: http://dx.doi.org/10.1016/0304-4165(86)90306-5)
doi: 10.1016/0304-4165(86)90306-5
[10]   Feng G, Wan Y, Balian G. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors. 2008, 26(3):132-142. (Available from: http://dx.doi.org/10.1080/08977190802105917)
doi: 10.1080/08977190802105917 pmid: 18569021
[11]   Feng G, Wan Y, Shen FH. Nucleus pulposus explant culture model. J Orthop Res. 2009, 27(6):814-819. (Available from: http://dx.doi.org/10.1002/jor.20803)
doi: 10.1002/jor.20803 pmid: 19030173
[12]   Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 2009, 48(1):5-10. (Available from: http://dx.doi.org/10.1093/rheumatology/ken396)
doi: 10.1093/rheumatology/ken396 pmid: 18854342
[13]   Hanley ENJr, Herkowitz HN, Kirkpatrick JS. Debating the value of spine surgery. J Bone Joint Surg Am. 2010, 92(5):1293-1304. (Available from: http://dx.doi.org/10.2106/JBJS.I.01439)
doi: 10.2106/JBJS.I.01439 pmid: 20439681
[14]   Hogan M, Girish K, James R. Growth differentiation factor-5 regulation of extracellular matrix gene expression in murine tendon fibroblasts. J Tissue Eng Regen Med. 2011, 5(3):191-200. (Available from: http://dx.doi.org/10.1002/term.304)
doi: 10.1002/term.304 pmid: 20653042
[15]   Hua G, Haiping Z, Baorong H. Effect of ulinastatin on the expression of iNOS, MMP-2, and MMP-3 in degenerated nucleus pulposus cells of rabbits. Connect Tissue Res. 2013, 54(1):29-33. (Available from: http://dx.doi.org/10.3109/03008207.2012.716882)
doi: 10.3109/03008207.2012.716882
[16]   Kaneyama S, Nishida K, Takada T. Fas ligand expression on human nucleus pulposus cells decreases with disc degeneration processes. J Orthop Sci. 2008, 13(2):130-135. (Available from: http://dx.doi.org/10.1007/s00776-007-1204-4)
doi: 10.1007/s00776-007-1204-4
[17]   Kim JS, Ellman MB, An HS. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc. J Cell Physiol. 2012, 227(4):1512-1520. (Available from: http://dx.doi.org/10.1002/jcp.22867)
doi: 10.1002/jcp.22867
[18]   Kim YJ, Sah RL, Doong JY. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988, 174(1):168-176. (Available from: http://dx.doi.org/10.1016/0003-2697(88)90532-5)
doi: 10.1016/0003-2697(88)90532-5 pmid: 2464289
[19]   Larson III JW, Levicoff EA, Gilbertson LG. Biologic modification of animal models of intervertebral disc degeneration. J Bone Joint Surg Am. 2006, 88(Suppl. 2):83-88. (Available from: http://dx.doi.org/10.2106/JBJS.F.00043)
doi: 10.2106/JBJS.F.00043 pmid: 16595450
[20]   Li X, Leo BM, Beck G. Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine. 2004, 29(20):2229-2234. (Available from: http://dx.doi.org/10.1097/01.brs.0000142427.82605.fb)
doi: 10.1097/01.brs.0000142427.82605.fb pmid: 15480133
[21]   Liang H, Ma SY, Feng G. Therapeutic effects of adenovirus-mediated growth and differentiation factor-5 in a mice disc degeneration model induced by annulus needle puncture. Spine J. 2010, 10(1):32-41. (Available from: http://dx.doi.org/10.1016/j.spinee.2009.10.006)
doi: 10.1016/j.spinee.2009.10.006
[22]   Masuda K. Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J. 2008, 17(Suppl. 4):441-451. (Available from: http://dx.doi.org/10.1007/s00586-008-0749-z)
doi: 10.1007/s00586-008-0749-z pmid: 2587664
[23]   Melrose J, Shu C, Young C. Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration. Spine. 2012, 37(1):18-25. (Available from: http://dx.doi.org/10.1097/BRS.0b013e31820cd8d5)
doi: 10.1097/BRS.0b013e31820cd8d5 pmid: 22179320
[24]   Moore YR, Dickinson DP, Wikesj? UM. Growth/differentiation factor-5: a candidate therapeutic agent for periodontal regeneration A review of pre-clinical data. J Clin Periodontol. 2010, 37(3):288-298. (Available from: http://dx.doi.org/10.1111/j.1600-051X.2009.01527.x)
doi: 10.1111/j.1600-051X.2009.01527.x pmid: 20088982
[25]   Nishida K, Kang JD, Suh JK. Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine. 1998, 23(22):2437-2442. (Available from: http://dx.doi.org/10.1097/00007632-199811150-00016)
doi: 10.1097/00007632-199811150-00016 pmid: 9836359
[26]   Nishida K, Kang JD, Gilbertson LG. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor β1 encoding gene. Spine. 1999, 24(23):2419-2425. (Available from: http://dx.doi.org/10.1097/00007632-199912010-00002)
doi: 10.1097/00007632-199912010-00002 pmid: 10626303
[27]   Pfirrmann CW, Metzdorf A, Zanetti M. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001, 26(17):1873-1878. (Available from: http://dx.doi.org/10.1097/00007632-200109010-00011)
doi: 10.1097/00007632-200109010-00011 pmid: 11568697
[28]   Phillips FM, Slosar PJ, Youssef JA. Lumbar spine fusion for chronic low back pain due to degenerative disc disease: a systematic review. Spine. 2013, 38(7):E409-E422. (Available from: http://dx.doi.org/10.1097/BRS.0b013e3182877f11)
doi: 10.1097/BRS.0b013e3182877f11 pmid: 23334400
[29]   Saiga K, Furumatsu T, Yoshida A. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury. Biochem Biophys Res Commun. 2010, 402(2):329-334. (Available from: http://dx.doi.org/10.1016/j.bbrc.2010.10.026)
doi: 10.1016/j.bbrc.2010.10.026 pmid: 20937261
[30]   Shimer AL, Chadderdon RC, Gilbertson LG. Gene therapy approaches for intervertebral disc degeneration. Spine. 2004, 29(23):2770-2778. (Available from: http://dx.doi.org/10.1097/01.brs.0000146455.11253.08)
doi: 10.1097/01.brs.0000146455.11253.08
[31]   Smith LJ, Nerurkar NL, Choi KS. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech. 2011, 4(1):31-41. (Available from: http://dx.doi.org/10.1242/dmm.006403)
doi: 10.1242/dmm.006403
[32]   Sobajima S, Kim JS, Gilbertson LG. Gene therapy for degenerative disc disease. Gene Ther. 2004, 11(4):390-401. (Available from: http://dx.doi.org/10.1038/sj.gt.3302200)
doi: 10.1038/sj.gt.3302200 pmid: 14724681
[33]   Stoyanov JV, Gantenbein-Ritter B, Bertolo A. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater. 2011, 21 533-547
doi: 10.22203/eCM.v021a40 pmid: 21710444
[34]   Walsh AJ, Bradford DS, Lotz JC. In vivo growth factor treatment of degenerated intervertebral discs. Spine. 2004, 29(2):156-163. (Available from: http://dx.doi.org/10.1097/01.BRS.0000107231.67854.9F)
doi: 10.1097/01.BRS.0000107231.67854.9F pmid: 14722406
[35]   Wang H, Kroeber M, Hanke M. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells. J Mol Med. 2004, 82(2):126-134. (Available from: http://dx.doi.org/10.1007/s00109-003-0507-y)
doi: 10.1007/s00109-003-0507-y
[36]   Williams FM, Popham M, Hart DJ. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum. 2011, 63(3):708-712. (Available from: http://dx.doi.org/10.1002/art.30169)
doi: 10.1002/art.30169 pmid: 3498734
[37]   Zaidi SH, Huang Q, Momen A. Growth differentiation factor 5 regulates cardiac repair after myocardial infarction. J Am Coll Cardiol. 2010, 55(2):135-143. (Available from: http://dx.doi.org/10.1016/j.jacc.2009.08.041)
doi: 10.1016/j.jacc.2009.08.041 pmid: 20117381
[1] Dan Huang, Wen-ya Qiu, Bei Zhang, Bing-hong Wang, Yu-feng Yao. Peripheral deep anterior lamellar keratoplasty using a cryopreserved donor cornea for Terrien’s marginal degeneration[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(12): 1055-1063.
[2] Ya-lin Wu, Jie Li, Ke Yao. Structures and biogenetic analysis of lipofuscin bis-retinoids[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(9): 763-773.
[3] Qiang Liu, Xiao-jia Su, Yan Yu, Yong-lin Liu. Correlation between virus persistent infection and cardic function in patients with dilated cardiomyopathy[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(8): 749-753.
[4] Qi-da Hu, Hui Fan, Wei-jian Lou, Qing-qing Wang, Gu-ping Tang. Polyethylenimine-cyclodextrin-tegafur conjugate shows anti-cancer activity and a potential for gene delivery[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(9): 720-729.
[5] Yin-gang ZHANG, Zheng-ming SUN, Jiang-tao LIU, Shi-jie WANG, Feng-ling REN, Xiong GUO. Features of intervertebral disc degeneration in rat’s aging process[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(7): 522-527.
[6] Yong-song GUAN, Yuan LIU, Qing ZOU, Qing HE, Zi LA, Lin YANG, Ying HU. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(5): 331-340.
[7] Yong FU, Shen-qing WANG, Ying-peng LIU, Guo-peng WANG, Jian-ting WANG, Shu-sheng GONG. Gene transfer into primary cultures of fetal neural stem cells by a recombinant adenovirus carrying the gene for green fluorescent protein[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(4): 299-305.
[8] LI Zhao-lun, TIAN Pu-xun, XUE Wu-jun, WU Jun. Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(6): 436-444.
[9] Sun Huai-Chang, Xue Fang-Ming, Qian Ke, Fang Hao-Xia, Qiu Hua-Lei, Zhang Xin-Yu, Yin Zhao-Hua. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(4): 13-.
[10] LI Da, WANG Qing-qing, TANG Gu-ping, HUANG Hong-liang, SHEN Fen-ping, LI Jing-zhong, YU Hai. Receptor-mediated gene delivery using polyethylenimine (PEI) coupled with polypeptides targeting FGF receptors on cells surface[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(11): 10-.
[11] XU Zhi-nan, SHEN Wen-he, CHEN Hao, CEN Pei-lin. Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6(5): 16-.