Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2016, Vol. 17 Issue (1): 1-9    DOI: 10.1631/jzus.B1500181
Review     
Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): a potential therapeutic target?
Xiao-juan Xu1,2,Liang Liu3,Shu-kun Yao1,2,?()
1 Gastroenterology Department, China-Japan Friendship Hospital, Beijing 100029, China
2 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100073, China
3 Jinan Central Hospital Affiliated to Shandong University, Jinan 250014, China
Download: HTML     PDF(901KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort associated with abnormal bowel habits. Diarrhea-predominant IBS (IBS-D) is a major subtype of IBS, the predominant manifestations of which are abdominal pain and diarrhea. The pathogenesis of IBS-D remained unknown until recently. The effects of psychosocial stress, central hypervigilance, neuroendocrine abnormality, disturbed gastrointestinal motility, mucosal immune activation, intestinal barrier dysfunction, visceral hypersensitivity (VH), altered gut flora, and genetic susceptibility may be involved in its development. Recently, increased attention has been placed on the neural-immune-endocrine network mechanism in IBS-D, especially the role of various neuroendocrine mediators. As a member of the neurotrophin family, nerve growth factor (NGF) has diverse biological effects, and participates in the pathogenesis of many diseases. Basic studies have demonstrated that NGF is associated with inflammatory- and stress-related VH, as well as stress-related intestinal barrier dysfunction. The aim of this study is to summarize recent literature and discuss the role of NGF in the pathophysiology of IBS-D, especially in VH and intestinal barrier dysfunction, as well as its potential as a therapeutic target in IBS-D.



Key wordsNerve growth factor      Diarrhea-predominant irritable bowel syndrome      Pathophysiology      Intestinal barrier dysfunction      Visceral hypersensitivity     
Received: 27 June 2015      Published: 01 January 2016
Fund:  Project supported by the National Ministry of Science and Technology “Twelfth Five-Year“ Supporting Project, China(No. 2014BAI08B02)
Corresponding Authors: Shu-kun Yao     E-mail: Ysk12329@126.com
Cite this article:

Xiao-juan Xu,Liang Liu,Shu-kun Yao. Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): a potential therapeutic target?. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(1): 1-9.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1500181     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2016/V17/I1/1

Fig. 1 Flow diagram of the study selection and exclusion process
Reference Country Study type Employed techniques Key findings
Willot et al., 2012 Canada Human Immunohistochemistry, enzyme-linked immuno sorbent assay (ELISA) Rectal mucosal NGF content was higher in IBS-D children than in control and correlated with mast cell (MC) number
Dothel et al., 2015 Italy Human Immunohistochemistry, ELISA, primary cell culture, qRT-PCR Higher nerve fiber density, neuronal sprouting, and mucosal NGF and TrkA levels in IBS patients; NGF antibodies inhibited the neurotrophic effect of mucosal supernatants from IBS patients
Barreau et al., 2004 France Animal Immunohistochemistry, RT-PCR, gut permeability (GP) by 51Cr-EDTA Maternal deprivation (MD) increased visceral sensitivity, GP, and colonic NGF expression in rats; NGF antibodies abolished these effects
van den Wijngaard, 2009 The Netherlands Animal Immunohistochemistry, qRT-PCR, Western blotting Acute stress induced colonic hypersensitivity and elevated colonic MC numbers in adult MD rats; MC stabilizer, NGF antibodies, or TRPV1 antagonist prevented the hypersensitivity
Yu et al., 2008 China Animal Intraperitoneal NGF injection NGF enhanced water avoidance (WA)-induced visceral hypersensitivity
Delafoy et al., 2003 France Animal Intraperitoneal NGF injection Both NGF and trinitrobenzene sulfonic acid (TNBS) induced colonic hypersensitivity via capsaicin-sensitive afferent fibers; NGF antibodies could reverse the effects of NGF and TNBS
Delafoy et al., 2006 France Animal Drug intervention, colonic sensitivity assessment via barostat Calcitonin gene-related peptide (CGRP) antagonist alleviated TNBS or NGF-induced colonic hypersensitivity; NGF antibodies failed to reverse CGRP-induced hypersensitivity
Barreau et al., 2007 France Animal Drug intervention, GP by 51Cr-EDTA, immunohistochemistry, ELISA MD rats showed increased GP and colonic NGF content; CRF acts on mast cells to stimulate NGF release and participates in the elevated GP observed in MD adult rats
Barreau et al., 2008 France Animal Immunohistochemistry, ELISA, drug intervention MD induced increased nerve fiber density and synaptogenesis, as well as mast cell hyperplasia and hypertrophy; NGF antibodies prevented these effects
Table 1 Key data from the various studies exploring the role of NGF in IBS pathophysiology
Fig. 2 NGF-MC-nerve interaction in IBS-D pathophysiology
[1]   Akbar A, Yiangou Y, Facer P . Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008, 57(7):923-929. (Available from: http://dx.doi.org/10.1136/gut.2007.138982)
doi: 10.1136/gut.2007.138982 pmid: 18252749
[2]   Barbara G, Stanghellini V, de Giorgio R . Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004, 126(3):693-702. (Available from: http://dx.doi.org/10.1053/j.gastro.2003.11.055)
doi: 10.1053/j.gastro.2003.11.055
[3]   Barbara G, Wang B, Stanghellini V. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007, 132(1):26-37. (Available from: http://dx.doi.org/10.1053/j.gastro.2006.11.039)
doi: 10.1053/j.gastro.2006.11.039 pmid: 17241857
[4]   Barreau F, Cartier C, Ferrier L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology. 2004, 127(2):524-534. (Available from: http://dx.doi.org/10.1053/j.gastro.2004.05.019)
doi: 10.1053/j.gastro.2004.05.019
[5]   Barreau F, Cartier C, Leveque M. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol. 2007, 580(1):347-356. (Available from: http://dx.doi.org/10.1113/jphysiol.2006.120907)
doi: 10.1113/jphysiol.2006.120907 pmid: 17234701
[6]   Barreau F, Salvador-Cartier C, Houdeau E. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut. 2008, 57(5):582-590. (Available from: http://dx.doi.org/10.1136/gut.2007.126680)
doi: 10.1136/gut.2007.126680 pmid: 18194988
[7]   Bischoff SC, Barbara G, Buurman W. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14(1):189 (Available from: http://dx.doi.org/10.1186/s12876-014-0189-7)
doi: 10.1186/s12876-014-0189-7 pmid: 4253991
[8]   Bonnington JK, McNaughton PA. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol. 2003, 551(2):433-446. (Available from: http://dx.doi.org/10.1113/jphysiol.2003.039990)
doi: 10.1113/jphysiol.2003.039990
[9]   Bothwell M. Lewin GR, Carter BD. NGF, BDNF, NT3, and NT4. Neurotrophic Factors. 2014. Berlin Heidelberg, Springer. 3-15. (Available from: http://dx.doi.org/10.1007/978-3-642-45106-5_1)
doi: 10.1007/978-3-642-45106-5_1
[10]   Bramson C, Herrmann DN, Carey W. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. Pain Med. 2015, 16(6):1163-1176. (Available from: http://dx.doi.org/10.1111/pme.12677)
doi: 10.1111/pme.12677 pmid: 25594611
[11]   Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N Engl J Med. 2012, 367(17):1626-1635. (Available from: http://dx.doi.org/10.1056/NEJMra1207068)
doi: 10.1056/NEJMra1207068 pmid: 23388019
[12]   Cenac N, Andrews CN, Holzhausen M. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest. 2007, 117(3):636-647. (Available from: http://dx.doi.org/10.1172/JCI29255)
doi: 10.1172/JCI29255 pmid: 17304351
[13]   Chang L, Sundaresh S, Elliott J. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in irritable bowel syndrome. Neurogastroenterol Motil. 2009, 21(2):149-159. (Available from: http://dx.doi.org/10.1111/j.1365-2982.2008.01171.x)
doi: 10.1111/j.1365-2982.2008.01171.x pmid: 2745840
[14]   Choung RK, Locke GR. Epidemiology of IBS. Gastroenterol Clin N Am. 2011, 40(1):1-10. (Available from: http://dx.doi.org/10.1016/j.gtc.2010.12.006)
doi: 10.1016/j.gtc.2010.12.006
[15]   Co?ffier M, Gloro R, Boukhettala N. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol. 2010, 105(5):1181-1188. (Available from: http://dx.doi.org/10.1038/ajg.2009.700)
doi: 10.1038/ajg.2009.700
[16]   Coelho A, Wolf-Johnston AS, Shinde S. Urinary bladder inflammation induces changes in urothelial nerve growth factor and vanilloid receptor 1. Br J Pharmacol. 2015, 172(7):1691-1699. (Available from: http://dx.doi.org/10.1111/bph.12958)
doi: 10.1111/bph.12958 pmid: 25297375
[17]   Delafoy L, Raymond F, Doherty AM. Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain. 2003, 105(3):489-497. (Available from: http://dx.doi.org/10.1016/S0304-3959(03)00266-5)
doi: 10.1016/S0304-3959(03)00266-5 pmid: 14527709
[18]   Delafoy L, Gelot A, Ardid D. Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut. 2006, 55(7):940-945. (Available from: http://dx.doi.org/10.1136/gut.2005.064063)
doi: 10.1136/gut.2005.064063 pmid: 16401692
[19]   di Mola FF, Friess H, Zhu ZW. Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut. 2000, 46(5):670-678. (Available from: http://dx.doi.org/10.1136/gut.46.5.670)
doi: 10.1136/gut.46.5.670 pmid: 1727937
[20]   Dothel G, Barbaro MR, Boudin H. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2015, 148(5):1002-1011. (Available from: http://dx.doi.org/10.1053/j.gastro.2015.01.042)
doi: 10.1053/j.gastro.2015.01.042 pmid: 25655556
[21]   Evans RJ, Moldwin RM, Cossons N. Proof of concept trial of tanezumab for the treatment of symptoms associated with interstitial cystitis. J Urol. 2011, 185(5):1716-1721. (Available from: http://dx.doi.org/10.1016/j.juro.2010.12.088)
doi: 10.1016/j.juro.2010.12.088 pmid: 21420111
[22]   Ferrier L, Mazelin L, Cenac N. Stress-induced disruption of colonic epithelial barrier: role of interferon-Γ and myosin light chain kinase in mice. Gastroenterology. 2003, 125(3):795-804. (Available from: http://dx.doi.org/10.1016/S0016-5085(03)01057-6)
doi: 10.1016/S0016-5085(03)01057-6
[23]   Gimbel JS, Kivitz AJ, Bramson C. Long-term safety and effectiveness of tanezumab as treatment for chronic low back pain. Pain. 2014, 155(9):1793-1801. (Available from: http://dx.doi.org/10.1016/j.pain.2014.06.004)
doi: 10.1016/j.pain.2014.06.004
[24]   Hao JX, Duan LP. Progress in the relationship of intestinal mucosal barrier function and irritable bowel syndrome. Chin J Dig. 2010, 30(11):861-863 (in Chinese). (Available from: http://dx.doi.org/10.3760/cma.j.issn.0254-1432.2010.11.026)
doi: 10.3760/cma.j.issn.0254-1432.2010.11.026
[25]   Keita AV, S?derholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil. 2010, 22(7):718-733. (Available from: http://dx.doi.org/10.1111/j.1365-2982.2010.01498.x)
doi: 10.1111/j.1365-2982.2010.01498.x pmid: 20377785
[26]   Kennedy PJ, Cryan JF, Quigley EM. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome. Psychol Med. 2014, 44(14):3123-3134. (Available from: http://dx.doi.org/10.1017/S003329171400052X)
doi: 10.1017/S003329171400052X
[27]   Lee H, Park JH, Park DI. Mucosal mast cell count is associated with intestinal permeability in patients with diarrhea predominant irritable bowel syndrome. J Neurogastroenterol Motil. 2013, 19(2):244-250. (Available from: http://dx.doi.org/10.5056/jnm.2013.19.2.244)
doi: 10.5056/jnm.2013.19.2.244 pmid: 3644661
[28]   Leon A, Buriani A, Dal Toso R. Mast cells synthesize, store, and release nerve growth factor. PNAS. 1994, 91(9):3739-3743. (Available from: http://dx.doi.org/10.1073/pnas.91.9.3739)
doi: 10.1073/pnas.91.9.3739 pmid: 8170980
[29]   Levi-Montalcini R, Skaper SD, Dal Toso R. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996, 19(11):514-520. (Available from: http://dx.doi.org/10.1016/S0166-2236(96)10058-8)
doi: 10.1016/S0166-2236(96)10058-8 pmid: 8931279
[30]   Lewin GR, Lechner SG, Smith ES. Lewin GR, Carter BD. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Neurotrophic Factors. 2014 Springer Berlin Heidelberg 251-282. (Available from: http://dx.doi.org/10.1007/978-3-642-45106-5_10)
doi: 10.1007/978-3-642-45106-5_10
[31]   Li Q, Xu CP, Yang M. Expression and significance of nerve growth factor in ulcerative colitis. Chin J Gastroenterol. 2014, 19(10):593-595(in Chinese):593-595 (in Chinese). (Available from: http://dx.doi.org/10.3969/j.issn.1008-7125.2014.10.004)
doi: 10.3969/j.issn.1008-7125.2014.10.004
[32]   Liu L, Liu BN, Chen S. Visceral and somatic hypersensitivity, autonomic cardiovascular dysfunction and low-grade inflammation in a subset of irritable bowel syndrome patients. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2014, 15(10):907-914. (Available from: http://dx.doi.org/10.1631/jzus.B1400143)
doi: 10.1631/jzus.B1400143 pmid: 4201319
[33]   Martínez C, Lobo B, Pigrau M. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013, 62(8):1160-1168. (Available from: http://dx.doi.org/10.1136/gutjnl-2012-302093)
doi: 10.1136/gutjnl-2012-302093 pmid: 22637702
[34]   Mayer EA. The neurobiology of stress and gastrointestinal disease. Gut. 2000, 47(6):861-869. (Available from: http://dx.doi.org/10.1136/gut.47.6.861)
doi: 10.1136/gut.47.6.861 pmid: 11076888
[35]   Mujagic Z, Ludidi S, Keszthelyi D. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment Pharmacol Ther. 2014, 40(3):288-397. (Available from: http://dx.doi.org/10.1111/apt.12829)
doi: 10.1111/apt.12829 pmid: 24943095
[36]   Neunlist M, Toumi F, Oreschkova T. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol. 2003, 285(5):G1028-G1036. (Available from: http://dx.doi.org/10.1152/ajpgi.00066.2003)
doi: 10.1152/ajpgi.00066.2003 pmid: 12881224
[37]   Nickel JC, Atkinson G, Krieger JN. Preliminary assessment of safety and efficacy in proof-of-concept, randomized clinical trial of tanezumab for chronic prostatitis/chronic pelvic pain syndrome. Urology. 2012, 80(5):1105-1110. (Available from: http://dx.doi.org/10.1016/j.urology.2012.07.035)
doi: 10.1016/j.urology.2012.07.035
[38]   Ohashi K, Sato Y, Kawai M. Abolishment of TNBS-induced visceral hypersensitivity in mast cell deficient rats. Life Sci. 2008, 82(7-8):419-423. (Available from: http://dx.doi.org/10.1016/j.lfs.2007.11.027)
doi: 10.1016/j.lfs.2007.11.027 pmid: 18222490
[39]   Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS ONE. 2012, 7(6):e39935 (Available from: http://dx.doi.org/10.1371/journal.pone.0039935)
doi: 10.1371/journal.pone.0039935 pmid: 3386952
[40]   Park CH, Joo YE, Choi SK. Activated mast cell infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome. J Korean Med Sci. 2003, 18(2):204-210. (Available from: http://dx.doi.org/10.3346/jkms.2003.18.2.204)
doi: 10.3346/jkms.2003.18.2.204 pmid: 12692417
[41]   Piche T, Barbara G, Aubert P. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009, 58(2):196-201. (Available from: http://dx.doi.org/10.1136/gut.2007.140806)
doi: 10.1136/gut.2007.140806 pmid: 18824556
[42]   Rukwied R, Mayer A, Kluschina O. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity inhuman skin. Pain. 2010, 148(3):407-413. (Available from: http://dx.doi.org/10.1016/j.pain.2009.11.022)
doi: 10.1016/j.pain.2009.11.022
[43]   Sanga P, Katz N, Polverejan E. Efficacy, safety, and tolerability of fulranumab, an anti-nerve growth factor antibody, in the treatment of patients with moderate to severe osteoarthritis pain. Pain. 2013, 154(10):1910-1919. (Available from: http://dx.doi.org/10.1016/j.pain.2013.05.051)
doi: 10.1016/j.pain.2013.05.051 pmid: 9278220
[44]   Shen F, Li DG, Zhou HQ. An epidemiological investigation of irritable bowel syndrome in Shanghai Songjiang communities. Chin J Dig. 2011, 31(10):663-668 (in Chinese). (Available from: http://dx.doi.org/10.3760/cma.j.issn.0254-)
doi: 10.3760/cma.j.issn.0254-
[45]   Shulman RJ, Jarrett ME, Cain KC. Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol. 2014, 49(11):1467-1476. (Available from: http://dx.doi.org/10.1007/s00535-013-0919-6)
doi: 10.1007/s00535-013-0919-6
[46]   Skaper SD, Pollock M, Facci L. Mast cells differentially express and release active high molecular weight neurotrophins. Mol Brain Res. 2001, 97(2):177-185. (Available from: http://dx.doi.org/10.1016/S0169-328X(01)00314-X)
doi: 10.1016/S0169-328X(01)00314-X pmid: 11750074
[47]   Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron. 1998, 20(4):629-632. (Available from: http://dx.doi.org/10.1016/S0896-6273(00)81003-X)
doi: 10.1016/S0896-6273(00)81003-X
[48]   Stein AT, Ufret-Vincenty CA, Hua L. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol. 2006, 128(5):509-522. (Available from: http://dx.doi.org/10.1085/jgp.200609576)
doi: 10.1085/jgp.200609576 pmid: 17074976
[49]   Tiseo PJ, Kivitz AJ, Ervin JE. Fasinumab (REGN475), an antibody against nerve growth factor for the treatment of pain: results from a double-blind, placebo-controlled exploratory study in osteoarthritis of the knee. Pain. 2014, 155(7):1245-1252. (Available from: http://dx.doi.org/10.1016/j.pain.2014.03.018)
doi: 10.1016/j.pain.2014.03.018
[50]   van den Wijngaard RM, Klooker TK, Welting O. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil. 2009, 21(10):1107-e94. (Available from: http://dx.doi.org/10.1111/j.1365-2982.2009.01339.x)
doi: 10.1111/j.1365-2982.2009.01339.x pmid: 19523146
[51]   Wang WL, Wu WC. Nerve growth factor and irritable bowel syndrome. Chin J Gastroenterol Hepatol. 2010, 19(3):285-287 (in Chinese). (Available from: http://dx.doi.org/10.3969/j.issn.1006-5709.2010.03.029)
doi: 10.3969/j.issn.1006-5709.2010.03.029
[52]   Willot S, Gauthier C, Patey N. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012, 24(8):734-e347. (Available from: http://dx.doi.org/10.1111/j.1365-2982.2012.01933.x)
doi: 10.1111/j.1365-2982.2012.01933.x pmid: 22625872
[53]   Yao X, Yang YS, Zhao KB. Clinical features and subtypes of irritable bowel syndrome based on Rome III diagnostic criteria. World Chin J Digestol. 2008, 16(5):563-566 (in Chinese). (Available from: http://dx.doi.org/10.3969/j.issn.1009-3079.2008.05.023)
doi: 10.3969/j.issn.1009-3079.2008.05.023
[54]   Yu Y, Gao J, Zhang W. Effect of nerve growth factor on colorectal visceral hypersensitivity in rats. Chin J Dig. 2008, 28(11):764-766 (in Chinese). (Available from: 10.3760/j.issn:0254-1432.2008.11.011)
doi: 10.3760/j.issn:0254-1432.2008.11.011
[55]   Zhang L, Duan LP, Liu YX. A meta-analysis of the prevalence and risk factors of irritable bowel syndrome in Chinese community. Chin J Intern Med. 2014, 53(12):969-975(in Chinese):969-975(in Chinese). (Available from: 10.3760/cma.j.issn.0578-1426.2014.12.011)
doi: 10.3760/cma.j.issn.0578-1426.2014.12.011 pmid: 25623565
[56]   Zhou QQ, Zhang BY, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009, 146(1-2):41-46. (Available from: 10.1016/j.pain.2009.06.017)
doi: 10.1016/j.pain.2009.06.017 pmid: 2763174
[57]   Zhou XP, Li XL. Advances in studies on visceral hypersensitivity of irritable bowel syndrome. Chin J Gastroenterol. 2014, 19(2):117-119(in Chinese) (Available from: 10.3969/j.issn.1008-7125.2014.02.011)
doi: 10.3969/j.issn.1008-7125.2014.02.011
[58]   Zhu W, Oxford GS. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci. 2007, 34(4):689-700. (Available from: 10.1016/j.mcn.2007.01.005)
doi: 10.1016/j.mcn.2007.01.005
[1] Li-na Yu, Li-hong Sun, Min Wang, Min Yan. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(10): 733-741.
[2] Liang Liu, Bei-ni Liu, Shuo Chen, Miao Wang, Yang Liu, Yan-li Zhang, Shu-kun Yao. Visceral and somatic hypersensitivity, autonomic cardiovascular dysfunction and low-grade inflammation in a subset of irritable bowel syndrome patients[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(10): 907-914.