Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2016, Vol. 17 Issue (1): 67-75    DOI: 10.1631/jzus.B1500071
Article     
Concomitant coronary and renal revascularization improves left ventricular hypertrophy more than coronary stenting alone in patients with ischemic heart and renal disease
Hao-jian Dong(),Cheng Huang,De-mou Luo,Jing-guang Ye,Jun-qing Yang,Guang Li,Jian-fang Luo,Ying-ling Zhou()
Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510080, China
Download: HTML     PDF(608KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Percutaneous transluminal renal artery stenting (PTRAS) has been proved to have no more benefit than medication alone in treating atherosclerotic renal artery stenosis (ARAS). Whether PTRAS could improve left ventricular hypertrophy (LVH) and reduce adverse events when based on percutaneous coronary intervention (PCI) for patients with coronary artery disease (CAD) and ARAS is still unclear. A retrospective study was conducted, which explored the effect of concomitant PCI and PTRAS versus PCI alone for patients with CAD and ARAS complicated by heart failure with preserved ejection fraction (HFpEF). A total of 228 patients meeting inclusion criteria were divided into two groups: (1) the HFpEF-I group, with PCI and PTRAS; (2) the HFpEF-II group, with PCI alone. Both groups had a two-year follow-up. The left ventricular mass index (LVMI) and other clinical characteristics were compared between groups. During the follow-up period, a substantial decrease in systolic blood pressure (SBP) was observed in the HFpEF-I group, but not in the HFpEF-II group. There was marked decrease in LVMI in both groups, but the HFpEF-I group showed a greater decrease than the HFpEF-II group. Regression analysis demonstrated that PTRAS was significantly associated with LVMI reduction and fewer adverse events after adjusting for other factors. In HFpEF patients with both CAD and ARAS, concomitant PCI and PTRAS can improve LVH and decrease the incidence of adverse events more than PCI alone. This study highlights the beneficial effect of ARAS revascularization, as a new and more aggressive revascularization strategy for such high-risk patients.



Key wordsCoronary artery disease (CAD)      Heart failure with preserved ejection fraction (HFpEF)      Percutaneous transluminal renal artery stenting (PTRAS)      Renal artery stenosis     
Received: 23 March 2015      Published: 01 January 2016
Fund:  Project supported by the Guangdong Provincial Scientific Grant, China(No. 2013B031800024)
Corresponding Authors: Hao-jian Dong,Ying-ling Zhou     E-mail: donghaojian@sina.com;zylgdh@163.com
Cite this article:

Hao-jian Dong,Cheng Huang,De-mou Luo,Jing-guang Ye,Jun-qing Yang,Guang Li,Jian-fang Luo,Ying-ling Zhou. Concomitant coronary and renal revascularization improves left ventricular hypertrophy more than coronary stenting alone in patients with ischemic heart and renal disease. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(1): 67-75.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1500071     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2016/V17/I1/67

Characteristics HFpEF-I (n=156) HFpEF-II (n=72) Total (n=228) F/Z/t/Χ 2 P-value
Age (year) 71 (64, 76) 70 (67, 75) 69.24±8.69 2.347 0.309
Male, n (%) 103 (66.0%) 49 (68.1%) 152 (66.7%) 1.533 0.444
Coronary vessel disease, n (%)
?Single Double Triple 25 (16.0%) 54 (34.6%) 77 (49.4%) 18 (25.0%) 16 (22.2%) 38 (52.8%) 43 (18.9%) 70 (30.7%) 115 (50.4%) 1.836 1.745 2.168 0.518 0.472 0.843
RAS type, n (%)
?Unilateral Bilateral* 112 (71.8%) 44 (28.2%) 56 (77.8%) 16 (22.2%) 168 (73.7%) 60 (26.3%) 6.536 5.712 0.759 0.637
Stenosis rate of renal artery (%)
?Left 84.63±11.99 76.92±8.99 81.36±11.02 1.554 0.215
?Right 82.74±10.70 74.76±10.84 79.80±10.41 1.160 0.316
eGFR (ml/min per 1.73 m2) 41.18±19.42 43.72±15.51 44.61±19.40 2.264 0.183
Chronic renal dysfunction (eGFR <60 ml/min per 1.73 m2), n (%) 129 (82.7%) 63 (87.5%) 192 (84.2%) 8.391 0.114
Kidney size
?Left 10.88±3.07 10.69±2.58 10.21±2.57 7.292 0.873
?Right 9.75±2.98 9.88±1.61 9.34±1.82 6.381 0.759
Stroke, n (%) 22 (14.1%) 11 (15.3%) 33 (14.5%) 6.770 0.235
Hypertension, n (%) 153 (98.1%) 65 (90.3%) 218 (95.6%) 5.064 0.053
SBP (mmHg) 156.34±27.90 143.09±24.89 151.43±27.37 4.710 0.000
DBP (mmHg) 79.77±13.78 80.88±13.12 80.89±13.38 2.984 0.124
Diabetes mellitus, n (%) 53 (34.0%) 31 (43.1%) 84 (36.8%) 2.305 0.330
LDL-C (mmol/L) 2.58 (2.16, 3.13) 2.31 (1.94, 2.89) 2.66±0.91 6.325 0.142
ACEI/ARB therapy, n (%) 127 (81.4%) 49 (68.1%) 176 (77.2%) 5.923 0.039
LVEF (%) 64.00 (58.00, 69.50) 61.00 (52.00, 65.00) 58.93±12.88 6.802 0.204
LVMI (g/m上2一) 198.93±36.81 169.15±47.24 178.95±44.06 4.657 0.002
NT-pro BNP (pg/ml) 2865.00 (819.70, 4510.00) 1514.50 (510.50, 3020.50) 1450.73±423.49 158.320 0.105
Table 1 Clinical characteristics of the study population at baseline
Group Contrast volume (ml) Coronary stent, n CIN (%)
HFpEF-I (n=156) 174.6±54.5 1.4±1.5 19.20
HFpEF-II (n=72) 171.0±46.8 1.6±1.4 16.70
Total (n=228) 172.7±49.4 1.5±1.2 18.40

F/Χ 2 0.192 0.279 0.808
P-value 0.826 0.757 0.668
Table 2 Comparison of contrast volume, CIN prevalence, and average number of coronary stents in two groups
Fig. 1 Modifications of blood pressure, LVEF, LVMI, and eGFR in the HFpEF-I and HFpEF-II groups two years after coronary and renal artery stenting * P<0.05, ** P<0.01 vs. baseline. SBP: systolic blood pressure; DBP: diastolic blood pressure; LVEF: left ventricular ejection fraction; LVMI: left ventricular mass index; eGFR: estimated glomerular filtration rate; NS: no significance
Impact factor β SE P value
PTRAS 0.563 0.102 0.038
ACEI/ARB therapy ?1.091 10.627 0.918
δSBP 0.261 0.112 0.044
Baseline LVMI 0.452 8.277 0.745
Table 3 Linear regression analysis for ?LVMI
Group Death MACE Hospitalization day
HFpEF-I (n=156) 19 (12.1%)a 49 (31.4%) 11 (6, 18)b
HFpEF-II (n=72) 10 (13.9%) 35 (48.6%) 8 (5, 16)

Χ 2/H value 2.673 15.581 1.388
P value 0.276 0.004 0.500
Table 4 Comparison of MACEs and hospitalization days in different groups
Impact factor β SE Wald HR (95% CI) P value
Baseline eGFR (ml/min per 1.73 m2) 0.004 0.005 0.467 1.004 (0.993–1.014) 0.494
Coronary complete revascularization ?0.080 0.173 0.215 0.923 (0.657–1.296) 0.643
PTRAS ?0.548 0.396 1.913 0.780 (0.596–0.964) 0.031
Baseline LVEF (%) 0.010 0.011 0.782 1.010 (0.988–1.033) 0.376
Diabetes mellitus 0.011 0.171 0.004 1.011 (0.723–1.413) 0.950
Hypertension ?0.357 0.384 0.867 0.699 (0.330–1.484) 0.352
Sex 0.269 0.197 1.873 1.309 (0.890–1.924) 0.171
Stroke ?0.002 0.224 0.000 0.998 (0.644–1.547) 0.992
Age (year) 0.004 0.011 0.140 1.004 (0.983–1.025) 0.708
LDL-C (mmol/L) ?0.088 0.970 0.819 0.916 (0.757–1.108) 0.365
Table 5 Multivariable logistic regression analysis for overall MACEs
[1]   Asrar ul Haq M, Wong C, Mutha V. Therapeutic interventions for heart failure with preserved ejection fraction: a summary of current evidence. World J Cardiol. 2014, 6(2):67-76. (Available from: http://dx.doi.org/10.4330/wjc.v6.i2.67)
doi: 10.4330/wjc.v6.i2.67 pmid: 24575173
[2]   Chábová V, Schirger A, Stanson AW. Outcomes of atherosclerotic renal artery stenosis managed without revascularization. Mayo Clin. Proc. 2000, 75(5):437-444. (Available from: http://dx.doi.org/10.4065/75.5.437)
doi: 10.4065/75.5.437
[3]   Chobanian AV, Bakris GL, Black HR. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003, 42(6):1206-1252. (Available from: http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2)
doi: 10.1161/01.HYP.0000107251.49515.c2
[4]   Cooper CJ, Murphy TP, Cutlip DE. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014, 370(1):13-22. (Available from: http://dx.doi.org/10.1056/NEJMoa1310753)
doi: 10.1056/NEJMoa1310753 pmid: 4815927
[5]   Dean RH, Kieffer RW, Smith BM. Renovascular hypertension: anatomic and renal function changes during drug therapy. Arch Surg. 1981, 116(11):1408-1415. (Available from: http://dx.doi.org/10.1001/archsurg.1981.01380230032005)
doi: 10.1001/archsurg.1981.01380230032005
[6]   de Silva R, Nikitin NP, Bhandari S. Atherosclerotic renovascular disease in chronic heart failure: should we intervene?. Eur Heart J. 2005, 26(16):1596-1605. (Available from: http://dx.doi.org/10.1093/eurheartj/ehi304)
doi: 10.1093/eurheartj/ehi304 pmid: 15919719
[7]   Ding J, Xu H, Yin X. Estrogen receptor α gene PvuII polymorphism and coronary artery disease: a meta-analysis of 21 studies. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2014, 15(3):243-255. (Available from: http://dx.doi.org/10.1631/jzus.B1300220)
doi: 10.1631/jzus.B1300220 pmid: 24599688
[8]   Folland ED, Parisi AF, Moynihan PF. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979, 60(4):760-766. (Available from: http://dx.doi.org/10.1161/01.CIR.60.4.760)
doi: 10.1161/01.CIR.60.4.760
[9]   Ghanami RJ, Rana H, Craven TE. Diastolic function predicts survival after renal revascularization. J Vasc Surg. 2011, 54(6):1720-1726. (Available from: http://dx.doi.org/10.1016/j.jvs.2011.05.091)
doi: 10.1016/j.jvs.2011.05.091 pmid: 3230744
[10]   Groban L, Kitzman DW. Diastolic function: a barometer for cardiovascular risk. Anesthesiology. 2010, 112(6):1303-1306. (Available from: http://dx.doi.org/10.1097/ALN.0b013e3181da89e4)
doi: 10.1097/ALN.0b013e3181da89e4 pmid: 3057510
[11]   Hirsch AT, Haskal ZJ, Hertzer NR. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006, 47(6):1239-1312. (Available from: http://dx.doi.org/10.1016/j.jacc.2005.10.009)
doi: 10.1016/j.jacc.2005.10.009
[12]   Kane GC, Xu N, Mistrik E. Renal artery revascularization improves heart failure control in patients with atherosclerotic renal artery stenosis. Nephrol Dial Transplant. 2010, 25(3):813-820. (Available from: http://dx.doi.org/10.1093/ndt/gfp393)
doi: 10.1093/ndt/gfp393 pmid: 19666661
[13]   Levy D, Garrison RJ, Savage DD. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990, 322(22):1561-1566. (Available from: http://dx.doi.org/10.1056/NEJM199005313222203)
doi: 10.1056/NEJM199005313222203
[14]   Little WC, Brucks S. Therapy for diastolic heart failure. Prog Cardiovasc Dis. 2005, 47(6):380-388. (Available from: http://dx.doi.org/10.1016/j.pcad.2005.02.004)
doi: 10.1016/j.pcad.2005.02.004 pmid: 16115517
[15]   Liu XB, Jiang JB, Zhou QJ. Evaluation of the safety and efficacy of transcatheter aortic valve implantation in patients with a severe stenotic bicuspid aortic valve in a Chinese population. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2015, 16(3):208-214. (Available from: http://dx.doi.org/10.1631/jzus.B1500017)
doi: 10.1631/jzus.B1500017 pmid: 25743122
[16]   Marcantoni C, Zanoli L, Rastelli S. Effect of renal artery stenting on left ventricular mass: a randomized clinical trial. Am J Kidney Dis. 2012, 60(1):39-46. (Available from: http://dx.doi.org/10.1053/j.ajkd.2012.01.022)
doi: 10.1053/j.ajkd.2012.01.022 pmid: 22495466
[17]   McMurray JJ, Adamopoulos S, Anker SD. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012, 14(8):803-869. (Available from: http://dx.doi.org/10.1093/eurjhf/hfs105)
doi: 10.1093/eurjhf/hfs105
[18]   Middleton RJ, Parfrey PS, Foley RN. Left ventricular hypertrophy in the renal patient. J Am Soc Nephrol. 2001, 12(5):1079-1084
doi: 10.1089/089277901300189538 pmid: 11316868
[19]   Park S, Jung JH, Seo HS. The prevalence and clinical predictors of atherosclerotic renal artery stenosis in patients undergoing coronary angiography. Heart Vessels. 2004, 19(6):275-279
doi: 10.1007/s00380-004-0789-1 pmid: 15799174
[20]   Patel SS, Kimmel PL, Singh A. New clinical practice guidelines for chronic kidney disease: a framework for K/DOQI. Semin Nephrol. 2002, 22(6):449-458
[21]   Przewlocki T, Kablak-Ziembicka A, Tracz W. Renal artery stenosis in patients with coronary artery disease. Kardiol Pol. 2008, 66(8):856-862 863-864
pmid: 18803137
[22]   Ronco C, di Lullo L. Cardiorenal syndrome. Heart Fail Clin. 2014, 10(2):251-280. (Available from: http://dx.doi.org/10.1016/j.hfc.2013.12.003)
doi: 10.1016/j.hfc.2013.12.003
[23]   Simon JF. Stenting atherosclerotic renal arteries: time to be less aggressive. Cleve Clin J Med. 2010, 77(3):178-189. (Available from: http://dx.doi.org/10.3949/ccjm.77a.09098)
doi: 10.3949/ccjm.77a.09098
[24]   Su CS, Liu TJ, Tsau CR. The feasibility, safety, and mid-term outcomes of concomitant percutaneous transluminal renal artery stenting in acute coronary syndrome patients at high clinical risk of renal artery stenosis. J Invasive Cardiol. 2013, 25(5):212-217
doi: 10.1186/1532-429X-15-35 pmid: 23645044
[25]   Wang X, Shi LZ. Association of matrix metalloproteinase-9 C1562T polymorphism and coronary artery disease: a meta-analysis. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2014, 15(3):256-263. (Available from: http://dx.doi.org/10.1631/jzus.B1300088)
doi: 10.1631/jzus.B1300088 pmid: 3955912
[26]   Wheatley K, Ives N, Gray R. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009, 361(20):1953-1962. (Available from: http://dx.doi.org/10.1056/NEJMoa0905368)
doi: 10.1056/NEJMoa0905368 pmid: 19907042
[1] Jie Ding, Hui Xu, Xiang Yin, Fu-rong Zhang, Xiao-ping Pan, Yi-an Gu, Jun-zhu Chen, Xiao-gang Guo. Estrogen receptor α gene PvuII polymorphism and coronary artery disease: a meta-analysis of 21 studies[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(3): 243-255.
[2] Li-jin Pu, Ying Shen, Rui-yan Zhang, Qi Zhang, Lin Lu, Feng-hua Ding, Jian Hu, Zheng-kun Yang, Wei-feng Shen. Screening for significant atherosclerotic renal artery stenosis with a regression model in patients undergoing transradial coronary angiography/intervention[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(8): 631-637.
[3] Hong-bing Yan, Bin Zheng, Zheng Wu, Jian Wang, Han-jun Zhao, Li Song, Yun-peng Chi. Two-stent strategy for renal artery stenosis with bifurcation lesion[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(8): 561-567.
[4] Zhi-qiang YING, Dan-dan ZHONG, Geng XU, Miao-yan CHEN, Qing-yu CHEN. Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(5): 368-374.