Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (12): 989-999    DOI: 10.1631/jzus.A1500159
Articles     
Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals
Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu
Department of Civil Engineering, National Cheng Kung University, Tainan 701, China; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Yttria-stabilized tetragonal-zirconia polycrystals (Y-TZP) have been shown to have superplastic properties at high temperatures, opening a way for the manufacture of complex pieces for industrial applications by a variety of techniques. However, before that is possible, it is important to analyze the deformation and fracture mechanisms at a macroscopic level based on continuum theory. In this paper, an elastic-plastic material model with a theoretical large deformation is constructed to simulate the true stress-true strain relationships of superplastic ceramics. The simplified constitutive law used for the numerical simulations is based on piecewise linear connections at the turning points of different deformation stages on the experimental stress-strain curves. The finite element model (FEM) is applied to selected tensile tests on 3-mol%-Y-TZP (3Y-TZP) co-doped with germanium oxide and other oxides (titanium, magnesium, and calcium) to verify its applicability. The results show that the stress-strain characteristics and the final deformed shapes in the finite element analysis (FEA) agree well with the tensile test experiments. It can be seen that the FEM presented can simulate the mechanical behavior of superplastic co-doped 3Y-TZP ceramics and that it offers a selective numerical simulation method for advanced development of superplastic ceramics.

Key wordsFinite element analysis (FEA)      Y2O3-stabilized tetragonal-zirconia polycrystals (Y-TZP)      Superplasticity     
Received: 30 May 2015      Published: 06 December 2016
CLC:  O34  
Cite this article:

Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 989-999.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500159     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I12/989

[1] Chih-Hung Chen, Hsuan-Teh Hu, Fu-Ming Lin, Hsin-Hsin Hsieh. Residual stress analysis and bow simulation of crystalline silicon solar cells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 49-58.
[2] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[3] Al Emran Ismail, Ahmad Kamal Ariffin, Shahrum Abdullah, Mariyam Jameelah Ghazali, Mohammed Abdulrazzaq, Ruslizam Daud. Stress intensity factors under combined bending and torsion moments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 1-8.
[4] Daisuke Maruyama, Hitoshi Kimura, Michihiko Koseki, Norio Inou. Driving force and structural strength evaluation of a flexible mechanical system with a hydrostatic skeleton[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 255-262.
[5] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[6] Peng-fei LIU, Jin-yang ZHENG, Li MA, Cun-jian MIAO, Lin-lin WU. Calculations of plastic collapse load of pressure vessel using FEA[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 900-906.
[7] Xiao LIU, Yun-yue YE, Zhuo ZHENG, Qin-fen LU. Magnetic field and performance analysis of a tubular permanent magnet linear synchronous motor applied in elevator door system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 572-576.
[8] MA Gai-ling, XU Hong, CUI Wen-yong. Computation of rolling resistance caused by rubber hysteresis of truck radial tire[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 778-785.