Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (5): 389-398    DOI: 10.1631/jzus.A1500185
Articles     
Laboratory investigation of the strength development of alkali-activated slag-stabilized chloride saline soil
Yin Cheng, Hao Yu, Bao-lin Zhu, Dao-xin Wei
Road Construction and Materials Research Center, China Academy of Transportation Sciences, Beijing 100029, China; School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Saline soil stabilization is being increasingly applied in foundation treatment engineering. Chloride saline soil obtained from sites and laboratory-made chloride soil (ZS) with various NaCl concentrations prepared artificially were stabilized using alkali-activated slag (AS). A series of unconfined compressive strength (UCS) tests, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA), thermal gravity–differential thermal gravity (TG–DTG), and ion concentration tests were conducted to investigate the strength variation and mechanism of the AS-stabilized chloride saline soils. The results showed that NaCl has a significant influence on the strength of AS-stabilized chloride saline soil and the strength of AS-stabilized ZS (GZS) increases with increase of chloride content in soil samples. Friedel’s salt (Fs) and NaOH are generated by the reaction of NaCl and CaO·Al2O3 (CA) in the slag in the GZS. Fs can fill the pores in stabilized soil, and NaOH can promote calcium silicate hydrate (CSH) generation. These two effects combine to enhance the strength of GZS. The relationship between the rate of increase of 28-d UCS of AS-stabilized chloride saline soil and the chloride content in soil was obtained through regression analysis of the increase of UCS of GZS.

Key wordsChloride saline soil      Alkali-activated slag (AS)      Stabilized soil      Strength      Friedel’s salt (Fs)      NaOH     
Received: 19 June 2015      Published: 04 May 2016
CLC:  TU472.4  
Cite this article:

Yin Cheng, Hao Yu, Bao-lin Zhu, Dao-xin Wei. Laboratory investigation of the strength development of alkali-activated slag-stabilized chloride saline soil. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 389-398.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500185     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I5/389

[1] Zi-qin Jiang, Yan-lin Guo, Ai-lin Zhang, Chao Dou, Cai-xia Zhang. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 20-32.
[2] Dong-Ming Yan, Hua-Wei Yin, Cheng-Lin Wu, Yan-Long Li, Jason Baird, Gen-Da Chen. Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 689-701.
[3] Sr?an M. Bo?njak, Neboj?a B. Gnjatovi?, Sreten D. Savi?evi?, Milorad P. Panteli?, Ivan Lj. Milenovi?. Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 353-365.
[4] Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.
[5] Li-jun Hou, Zhi-yong Luan, Da Chen, Shi-lang Xu. Experimental study of the shear properties of reinforced ultra-high toughness cementitious composite beams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 251-264.
[6] Zi-qin Jiang, Yan-lin Guo, Xiao-an Wang, Bin Huang. Design method of the pinned external integrated buckling-restrained braces with extended core. Part I: theoretical derivation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 781-792.
[7] Zi-qin Jiang, Yan-lin Guo, Jing-zhong Tong, Xing Yuan. Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 793-804.
[8] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[9] Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 282-290.
[10] Ke Zhang, Ping Cao, Rui Bao. Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 101-109.
[11] Jin-seong Lim, Tae-soo Kim, Seung-hun Kim. Ultimate strength of single shear bolted connections with cold-formed ferritic stainless steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 120-136.
[12] Yong Chen, Ji-yang Wang, Yong Guo, Guo-hui Shen, Li-xian Yang, Bin-nan Sun. Behavior of axially loaded tubular X-joints using bolted connection: mechanical model and validation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 880-889.
[13] Mehmet Baran, Merve Aktas. Occupant friendly seismic retrofit by concrete plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 789-804.
[14] Mykolas Daugevi?ius, Juozas Valivonis, Gediminas Mar?iukaitis. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 571-583.
[15] Xian-ping Liu, Pei-ming Wang, Min-ju Ding. Hydration process in Portland cement blended with activated coal gangue[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 503-510.