*" /> *" /> *" />
Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (1): 1-21    DOI: 10.1631/jzus.A1500125
    
Mechanics of dielectric elastomers: materials, structures, and devices*
Feng-bo Zhu1,2,Chun-li Zhang1,2,3,Jin Qian1,2,3,†(),Wei-qiu Chen1,2,3
1 Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
2 Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China
3 Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1243KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Dielectric elastomers (DEs) respond to applied electric voltage with a surprisingly large deformation, showing a promising capability to generate actuation in mimicking natural muscles. A theoretical foundation of the mechanics of DEs is of crucial importance in designing DE-based structures and devices. In this review, we survey some recent theoretical and numerical efforts in exploring several aspects of electroactive materials, with emphases on the governing equations of electromechanical coupling, constitutive laws, viscoelastic behaviors, electromechanical instability as well as actuation applications. An overview of analytical models is provided based on the representative approach of non-equilibrium thermodynamics, with computational analyses being required in more generalized situations such as irregular shape, complex configuration, and time-dependent deformation. Theoretical efforts have been devoted to enhancing the working limits of DE actuators by avoiding electromechanical instability as well as electric breakdown, and pre-strains are shown to effectively avoid the two failure modes. These studies lay a solid foundation to facilitate the use of DE materials, structures, and devices in a wide range of applications such as biomedical devices, adaptive systems, robotics, energy harvesting, etc.



Key wordsArtificial muscle      Smart material      Dielectric elastomer (DE)      Electromechanical coupling      Constitutive law      Viscoelasticity      Electromechanical instability      Actuation     
Received: 15 April 2015      Published: 06 January 2016
Fund:  the National Natural Science Foundation of China(No. 11321202);the Zhejiang Provincial Natural Science Foundation of China(No. LR16A020001)
Corresponding Authors: Jin Qian     E-mail: jqian@zju.edu.cn
Cite this article:

Feng-bo Zhu,Chun-li Zhang,Jin Qian,Wei-qiu Chen. Mechanics of dielectric elastomers: materials, structures, and devices*. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 1-21.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500125     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I1/1

Fig. 1 Working principle of DE actuators (a) Schematics of a membrane of DE with coated electrodes on both sides; (b) By applying an electric voltage, the electrostatic force compresses the DE membrane in the thickness direction and expands it in the membrane plane. The DE membrane recovers its original configuration when the voltage is removed; (c) An elastomer film at its reference state, with randomly distributed polymer dipoles; (d) Polarization of an ideal DE, in which the polymer dipoles are polarized freely; (e) A non-ideal DE under large deformation. The stress field is perpendicular to the direction of electric field, which impedes the polarization of dipoles (Anderson et al., 2012; Foo et al., 2012a)
Energy function Function form Strain Reference
neo-Hookean model ${W_s} = \frac{G}{2}(\lambda _1^2 + \lambda _2^2 + \lambda _1^{ - 2}\lambda _2^{ - 2} - 3)$ 30%–40% (Dollhofer et al., 2004; Zhao and Suo, 2007; Wang H. et al., 2013)
Gent model ${W_s} = - \frac{{G{J_{\lim }}}}{2}\log \left( {1 - \frac{{\lambda _1^2 + \lambda _2^2 + \lambda _1^{ - 2}\lambda _2^{ - 2} - 3}}{{{J_{\lim }}}}} \right)$ 30%–155% (Huang and Suo, 2012; Lu et al., 2012; Qu et al., 2012; Zhou et al., 2013; 2014a)
Mooney-Rivlin model $\begin{gathered} {W_s} = {C_1}({I_1} - 3) + {C_2}({I_2} - 3), \hfill \\ {I_1} = \lambda _1^2 + \lambda _2^2 + \lambda _3^2,\;{I_2} = \lambda _1^2\lambda _2^2 + \lambda _2^2\lambda _3^2 + \lambda _3^2\lambda _1^2 \hfill \\ \end{gathered} $ 
200% (Liu et al., 2010)
Yeoh model $\begin{gathered} {W_s} = \frac{{{C_1}}}{2}({I_1} - 3) + \frac{{{C_2}}}{2}{({I_1} - 3)^2} + \frac{{{C_3}}}{2}{({I_1} - 3)^3}, \hfill \\ {I_1} = \lambda _1^2 + \lambda _2^2 + \lambda _3^2 \hfill \\ \end{gathered} $ >200% (Wissler and Mazza, 2005)
Ogden model ${W_s} = \sum\limits_{p = 1}^N {\frac{{{\mu _p}}}{{{\alpha _p}}}} (\lambda _1^{{\alpha _p}} + \lambda _2^{{\alpha _p}} + \lambda _1^{ - {\alpha _p}}\lambda _2^{ - {\alpha _p}} - 3)$ 100%–400% (Goulbourne, 2011; Proulx et al., 2011; Qu and Suo, 2012)
Table 1 Strain energy density functions adopted in DE modeling
Fig. 2 A rheological model of DEs The viscoelasticity model consisting of two components in parallel: one being a spring α, and the other including another spring β and a dashpot η. An arbitrary deformation can be decomposed into two parts by postulating an intermediate state of deformation, which is achieved by elastic relaxation of spring β from the current state (Hong, 2011; Zhao et al., 2011; Wang Y.Q. et al., 2013)
Fig. 3 Three types of DE transducers and the influence of pre-stretch on electromechanical instability (a) and (b) Three types of dielectrics, depending on where the two curves ϕ(λ) and ϕB (λ) intersect; (c) Electromechanical response of a DE membrane with or without pre-stretch
Property Natural muscles DEs
Energy density 150 J/kg (peak to 300 J/kg) (Boy et al., 2013) 3400 J/kg (Brochu and Pei, 2010)
Frequencies and response time 10 Hz, 10 ms (Meijer et al., 2001) 10 kHz, 0.1 ms (Sheng et al., 2013)
Maximum strain 100% linear (Brochu and Pei, 2010) 1692% areal (Li T.F. et al., 2013)
Efficiency 60%–90% (Brochu and Pei, 2010)
Stroke 20%–40% linear (peak to 100%) 10%–100% linear (peak to 300%) (O’Halloran et al., 2008)
Actuation mechanism Molecular motors Maxwell force
Power source ATP Electricvoltage (1–10 kV) (Shankar et al., 2007)
Environment Wet and nutrition Insulation
Structure Bundled muscle cells, self-assembly Sandwiched membrane, grouped tensegrity and electrodes arrays (Bauer et al., 2014)
Size 10 μm–1 m (Magid and Law, 1985) 100 μm–0.1 m (Brochu and Pei, 2010)
Fabrication Tissue engineering Lithography, machining
Typical material Mammal muscle cells, molecules connected by extracellular matrices 3M-VHB, PDMS, Silicon (Li T.F. et al., 2012a; Wang J. et al., 2014)
Modulus 20–2000 kPa (Morrow et al., 2010) 20–2000 kPa (Sheng et al., 2012)
Viscoelasticity 0.1–100 s (van Loocke et al., 2008; 2009) 0.1–100 s (Zhang et al., 2014a)
Fatigues and life time 107 cycles (van Loocke et al., 2009) 107 cycles (Rosset et al., 2009)
Density 1.06 kg/L (Kornbluh et al., 2002) 0.94 kg/L (Shankar et al., 2007)
Table 2 Actuation performance: natural muscles vs. DEs
Fig. 4 Various DE actuators and their applications (a) An eye-camera system made of DE; (b) A bulging DE actuator; (c) A microfluidic valve that is dielectrically actuated; (d) A unimorph DE actuator; (e) A multi-finger DE gripper; (f) A stacking DE actuator; (g) A tubular DE actuator; (h) A swelling DE balloon
[1]   Ahmed S, Ounaies Z, Frecker M . Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Materials and Structures. 2014, 23(9): 094003
[2]   Anderson IA, Gisby TA, McKay TG et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. Journal of Applied Physics. 2012, 112(4): 041101 doi: 10.1063/1.4740023
doi: 10.1063/1.4740023
[3]   Arora S, Ghosh T, Muth J . Dielectric elastomer based prototype fiber actuators. Sensors and Actuators A: Physical. 2007, 136(1): 321-328 doi: 10.1016/j.sna.2006.10.044
doi: 10.1016/j.sna.2006.10.044
[4]   Bar-Cohen Y . Electroactive polymers (EAP) as actuators for potential future planetary mechanisms. 2004 NASA/DoD Conference on Evolvable Hardware, Proceedings, IEEE. 2004, 309-317 doi: 10.1109/EH.2004.1310845
doi: 10.1109/EH.2004.1310845
[5]   Bauer S, Bauer-Gogonea S, Graz I et al. 25th Anniversary Article: A soft future: from robots and sensor skin to energy harvesters. Advanced Materials. 2014, 26(1): 149-162 doi: 10.1002/adma.201303349
doi: 10.1002/adma.201303349
[6]   Boy CC, Vanella FA, Lattuca ME et al. Effect of starvation on growth rate, muscle growth and energy density of puyen, Galaxias maculatus. Journal of Applied Ichthyology. 2013, 29(5): 1001-1007 doi: 10.1111/jai.12147
doi: 10.1111/jai.12147
[7]   Boyce MC, Arruda EM . Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology. 2000, 73(3): 504-523 doi: 10.5254/1.3547602
doi: 10.5254/1.3547602
[8]   Brochu P, Pei Q . Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications. 2010, 31(1): 10-36 doi: 10.1002/marc.200900425
doi: 10.1002/marc.200900425
[9]   Bueschel A, Klinkel S, Wagner W . A viscoelastic model for dielectric elastomers based on a continuum mechanical formulation and its finite element implementation. Proc SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), No 79761R . 2011
[10]   Bueschel A, Klinkel S, Wagner W . Dielectric elastomers-numerical modeling of nonlinear visco-electroelasticity. International Journal for Numerical Methods in Engineering. 2013, 93(8): 834-856 doi: 10.1002/nme.4409
doi: 10.1002/nme.4409
[11]   Carpi F, de Rossi D . Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2004, 24(4): 555-562 doi: 10.1016/j.msec.2004.02.005
doi: 10.1016/j.msec.2004.02.005
[12]   Carpi F, Migliore A, Serra G et al. Helical dielectric elastomer actuators. Smart Materials & Structures. 2005, 14(6): 1210-1216
[13]   Carpi F, Bauer S, de Rossi D . Stretching dielectric elastomer performance. Science. 2010, 330(6012): 1759-1761 doi: 10.1126/science.1194773
doi: 10.1126/science.1194773
[14]   Chen WQ . The renaissance of continuum mechanics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2014, 15(4): 231-240 doi: 10.1631/jzus.A1400079
doi: 10.1631/jzus.A1400079
[15]   Chen WQ, Dai HH . Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mechanica Solida Sinica. 2012, 25(5): 530-541 doi: 10.1016/S0894-9166(12)60047-0
doi: 10.1016/S0894-9166(12)60047-0
[16]   Chen X, Mahadevan L, Driks A et al. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nature Nanotechnology. 2014, 9(2): 137-141 doi: 10.1038/nnano.2013.290
doi: 10.1038/nnano.2013.290
[17]   Davies GR, Yamwong T, Voice AM . Electrostrictive response of an ideal polar rubber: comparison with experiment. Proc SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). 2002, 4695: 111-119 doi: 10.1117/12.475155
doi: 10.1117/12.475155
[18]   Dollhofer J, Chiche A, Muralidharan V et al. Surface energy effects for cavity growth and nucleation in an incompressible neo-Hookean material-modeling and experiment. International Journal of Solids and Structures. 2004, 41(22-23): 6111-6127 doi: 10.1016/j.ijsolstr.2004.04.041
doi: 10.1016/j.ijsolstr.2004.04.041
[19]   Dorfmann L, Ogden RW . Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. 2014, USA Springer: 61-82
[20]   Duncan PN, Nguyen TV, Hui EE . Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(45): 18104-18109 doi: 10.1073/pnas.1310254110
doi: 10.1073/pnas.1310254110
[21]   Dünki SJ, Ko YS, Nüesch FA et al. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Advanced Functional Materials. 2015, 25(16): 2467-2475 doi: 10.1002/adfm.201500077
doi: 10.1002/adfm.201500077
[22]   Follador M, Tramacere F, Mazzolai B . Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration & Biomimetics. 2014, 9(4): 046002 doi: 10.1088/1748-3182/9/4/046002
doi: 10.1088/1748-3182/9/4/046002
[23]   Foo CC, Cai S, Koh SJA et al. Model of dissipative dielectric elastomers. Journal of Applied Physics. 2012, 111(3): 034102 doi: 10.1063/1.3680878
doi: 10.1063/1.3680878
[24]   Foo CC, Koh SJA, Keplinger C et al. Performance of dissipative dielectric elastomer generators. Journal of Applied Physics. 2012, 111(9): 094107 doi: 10.1063/1.4714557
doi: 10.1063/1.4714557
[25]   Galantini F, Bianchi S, Castelvetro V et al. Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Materials and Structures. 2013, 22(5): 055025
[26]   Gent AN . A new constitutive relation for rubber. Rubber Chemistry and Technology. 1996, 69(1): 59-61 doi: 10.5254/1.3538357
doi: 10.5254/1.3538357
[27]   Godaba H, Foo CC, Zhang ZQ et al. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Applied Physics Letters. 2014, 105(11): 112901 doi: 10.1063/1.4895815
doi: 10.1063/1.4895815
[28]   Goulbourne NC . A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. International Journal of Solids and Structures. 2011, 48(7-8): 1085-1091 doi: 10.1016/j.ijsolstr.2010.10.028
doi: 10.1016/j.ijsolstr.2010.10.028
[29]   Goulbourne NC, Mockensturm EM, Frecker MI . Electro-elastomers: large deformation analysis of silicone membranes. International Journal of Solids and Structures. 2007, 44(9): 2609-2626 doi: 10.1016/j.ijsolstr.2006.08.015
doi: 10.1016/j.ijsolstr.2006.08.015
[30]   Graf C, Hitzbleck J, Feller T et al. Dielectric elastomer-based energy harvesting: material, generator design, and optimization. Journal of Intelligent Material Systems and Structures. 2014, 25(8): 951-966 doi: 10.1177/1045389X13502857
doi: 10.1177/1045389X13502857
[31]   Ha SM, Yuan W, Pei QB et al. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Advanced Materials. 2006, 18(7): 887-891 doi: 10.1002/adma.200502437
doi: 10.1002/adma.200502437
[32]   Haus H, Matysek M, Moessinger H et al. Modelling and characterization of dielectric elastomer stack actuators. Smart Materials and Structures. 2013, 22(10): 114009-114020
[33]   He T, Zhao X, Suo Z . Dielectric elastomer membranes undergoing inhomogeneous deformation. Journal of Applied Physics. 2009, 106(8): 083522 doi: 10.1063/1.3253322
doi: 10.1063/1.3253322
[34]   Hong W . Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids. 2011, 59(3): 637-650 doi: 10.1016/j.jmps.2010.12.003
doi: 10.1016/j.jmps.2010.12.003
[35]   Hu Y, Suo Z . Viscoelasticity and poroelasticity in elastomer gels. Acta Mechanica Solida Sinica. 2012, 25(5): 441-458 doi: 10.1016/S0894-9166(12)60039-1
doi: 10.1016/S0894-9166(12)60039-1
[36]   Huang JS, Li TF, Foo CC et al. Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters. 2012, 100(4): 041911 doi: 10.1063/1.3680591
doi: 10.1063/1.3680591
[37]   Huang JS, Shian S, Suo ZG et al. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Advanced Functional Materials. 2013, 23(40): 5056-5061 doi: 10.1002/adfm.201300402
doi: 10.1002/adfm.201300402
[38]   Huang R, Suo ZG . Electromechanical phase transition in dielectric elastomers. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences. 2012, 468(2140): 1014-1040 doi: 10.1098/rspa.2011.0452
doi: 10.1098/rspa.2011.0452
[39]   Hui TH, Zhou ZL, Qian J et al. Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Physical Review Letters. 2014, 113(11): 118101 doi: 10.1103/PhysRevLett.113.118101
doi: 10.1103/PhysRevLett.113.118101
[40]   Jean-Mistral C, Basrour S, Chaillout JJ . Modelling of dielectric polymers for energy scavenging applications. Smart Materials & Structures. 2010, 19(10): 105006-105016 doi: 10.1088/0964-1726/19/10/105006
doi: 10.1088/0964-1726/19/10/105006
[41]   Jiang HY, Qian J, Lin Y et al. Aggregation dynamics of molecular bonds between compliant materials. Soft Matter. 2015, 11(14): 2812-2820 doi: 10.1039/C4SM02903H
doi: 10.1039/C4SM02903H
[42]   Jordi C, Michel S, Fink E . Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspiration & Biomimetics. 2010, 5(2): 026007 doi: 10.1088/1748-3182/5/2/026007
doi: 10.1088/1748-3182/5/2/026007
[43]   Ju LN, Qian J, Zhu C . Transport regulation of two-dimensional receptor-ligand association. Biophysical Journal. 2015, 108(7): 1773-1784 doi: 10.1016/j.bpj.2015.02.023
doi: 10.1016/j.bpj.2015.02.023
[44]   Jung I, Xiao J, Malyarchuk V et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108(5): 1788-1793 doi: 10.1073/pnas.1015440108
doi: 10.1073/pnas.1015440108
[45]   Kaal W, Herold S . Numerical investigations on dielectric stack actuators with perforated electrodes. Smart Materials and Structures. 2013, 22(10): 104016
[46]   Keplinger C, Li TF, Baumgartner R et al. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter. 2012, 8(2): 285-288 doi: 10.1039/C1SM06736B
doi: 10.1039/C1SM06736B
[47]   Khan KA, Wafai H, El Sayed T . A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Computational Mechanics. 2013, 52(2): 345-360 doi: 10.1007/s00466-012-0815-6
doi: 10.1007/s00466-012-0815-6
[48]   Kofod G, Kornbluh R, Pelrine R et al. Actuation response of polyacrylate dielectric elastomers. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (EAPAD). 2001, 4329: 141-147
[49]   Kofod G, Sommer-Larsen P, Kronbluh R et al. Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures. 2003, 14(12): 787-793 doi: 10.1177/104538903039260
doi: 10.1177/104538903039260
[50]   Kofod G, Wirges W, Paajanen M et al. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters. 2007, 90(8): 081916 doi: 10.1063/1.2695785
doi: 10.1063/1.2695785
[51]   Koh SJA, Li TF, Zhou JX et al. Mechanisms of large actuation strain in dielectric elastomers. Journal of Polymer Science Part B: Polymer Physics. 2011, 49(7): 504-515 doi: 10.1002/polb.22223
doi: 10.1002/polb.22223
[52]   Kollosche M, Zhu J, Suo ZG et al. Complex interplay of nonlinear processes in dielectric elastomers. Physical Review E. 2012, 85(5): 976-986 doi: 10.1103/PhysRevE.85.051801
doi: 10.1103/PhysRevE.85.051801
[53]   Kornbluh RD, Pelrine R, Pei QB et al. Ultrahigh strain response of field-actuated elastomeric polymers. Proc SPIE 3987, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD). 2000, 3987: 51-64 doi: 10.1117/12.387763
doi: 10.1117/12.387763
[54]   Kornbluh R, Pelrine R, Pei QB et al. Electroelastomers: applications of dielectric elastomer transducers for actuation, generation and smart structures. Proc SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 254-270 doi: 10.1117/12.475072
doi: 10.1117/12.475072
[55]   Kornbluh RD, Pelrine R, Prahlad H et al. Dielectric elastomers: stretching the capabilities of energy harvesting. MRS Bulletin. 2012, 37(3): 246-253 doi: 10.1557/mrs.2012.41
doi: 10.1557/mrs.2012.41
[56]   Kovacs G, Duering L, Michel S et al. Stacked dielectric elastomer actuator for tensile force transmission. Sensors and Actuators A: Physical. 2009, 155(2): 299-307 doi: 10.1016/j.sna.2009.08.027
doi: 10.1016/j.sna.2009.08.027
[57]   Leng J, Liu L, Liu Y et al. Electromechanical stability of dielectric elastomer. Applied Physics Letters. 2009, 94(21): 211901 doi: 10.1063/1.3138153
doi: 10.1063/1.3138153
[58]   Li B, Zhou J, Chen H . Electromechanical stability in charge-controlled dielectric elastomer actuation. Applied Physics Letters. 2011, 99(24): 244101 doi: 10.1063/1.3670048
doi: 10.1063/1.3670048
[59]   Li B, Chen H, Qiang J et al. A model for conditional polarization of the actuation enhancement of a dielectric elastomer. Soft Matter. 2012, 8(2): 311-317 doi: 10.1039/C1SM05847A
doi: 10.1039/C1SM05847A
[60]   Li B, Chen H, Zhou J . Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Composites Part A: Applied Science and Manufacturing. 2013, 52(5): 55-61 doi: 10.1016/j.compositesa.2012.11.013
doi: 10.1016/j.compositesa.2012.11.013
[61]   Li B, Zhang J, Liu L et al. Modeling of dielectric elastomer as electromechanical resonator. Journal of Applied Physics. 2014, 116(12): 124509 doi: 10.1063/1.4896584
doi: 10.1063/1.4896584
[62]   Li JR, Liu LW, Liu YJ et al. Dielectric elastomer bending actuator: experiment and theoretical analysis. Proc SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), No 905639 http://dxdoiorg/101117/122045092. 2014
[63]   Li TF, Qu SX, Yang W . Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation. Journal of Applied Physics. 2012, 112(3): 034119 doi: 10.1063/1.4745049
doi: 10.1063/1.4745049
[64]   Li TF, Qu SX, Keplinger C et al. Modeling guided design of dielectric elastomer generators and actuators. Proc SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD), No 83401X http://dxdoiorg/101117/12915424. 2012
[65]   Li TF, Keplinger C, Baumgartner R et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids. 2013, 61(2): 611-628 doi: 10.1016/j.jmps.2012.09.006
doi: 10.1016/j.jmps.2012.09.006
[66]   Li TF, Li C, Mao GY et al. Novel dielectric elastomer structures with electromechanical instability. Proc SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), No 90560N http://dxdoiorg/101117/122044959. 2014
[67]   Li TF, Zou ZN, Mao GY et al. Electromechanical bistable behavior of a novel dielectric elastomer actuator. Journal of Applied Mechanics. 2014, 81(4): 041019 doi: 10.1115/1.4025530
doi: 10.1115/1.4025530
[68]   Liang X, Cai S . Shape bifurcation of a spherical dielectric elastomer balloon under the actions of internal pressure and electric voltage. Journal of Applied Mechanics. 2015, 82(10): 101002 doi: 10.1115/1.4030881
doi: 10.1115/1.4030881
[69]   Liu H, Zhang L, Yang D et al. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2 . Soft Materials. 2013, 11(3): 363-370 doi: 10.1080/1539445X.2012.661821
doi: 10.1080/1539445X.2012.661821
[70]   Liu L, Liu Y, Leng JS et al. Electromechanical stability of compressible dielectric elastomer actuators. Smart Materials and Structures. 2011, 20(11): 115015
[71]   Liu L, Liu Y, Yu K et al. Thermoelectromechanical stability of dielectric elastomers undergoing temperature variation. Mechanics of Materials. 2014, 72(5): 33-45 doi: 10.1016/j.mechmat.2013.05.013
doi: 10.1016/j.mechmat.2013.05.013
[72]   Liu Y, Liu L, Zhang Z et al. Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. EPL (Europhysics Letters). 2010, 90(3): 36004 doi: 10.1209/0295-5075/90/36004
doi: 10.1209/0295-5075/90/36004
[73]   Liu Y, Gao M, Mei S et al. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Applied Physics Letters. 2013, 103(6): 064101 doi: 10.1063/1.4817977
doi: 10.1063/1.4817977
[74]   Lu TQ, Huang JH, Jordi C et al. Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter. 2012, 8(22): 6167-6173 doi: 10.1039/c2sm25692d
doi: 10.1039/c2sm25692d
[75]   Lu TQ, Cai SQ, Wang HM et al. Computational model of deformable lenses actuated by dielectric elastomers. Journal of Applied Physics. 2013, 114(10): 104104 doi: 10.1063/1.4821028
doi: 10.1063/1.4821028
[76]   Lu TQ, Foo CC, Huang JH et al. Highly deformable actuators made of dielectric elastomers clamped by rigid rings. Journal of Applied Physics. 2014, 115(18): 184105 doi: 10.1063/1.4876722
doi: 10.1063/1.4876722
[77]   Maffli L, Rosset S, Shea HR . Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Materials and Structures. 2013, 22(10): 104013
[78]   Magid A, Law DJ . Myofibrils bear most of the resting tension in frog skeletal-muscle. Science. 1985, 230(4731): 1280-1282 doi: 10.1126/science.4071053
doi: 10.1126/science.4071053
[79]   Mao G, Li T, Zou Z et al. Prestretch effect on snap-through instability of short-length tubular elastomeric balloons under inflation. International Journal of Solids and Structures. 2014, 51(11-12): 2109-2115 doi: 10.1016/j.ijsolstr.2014.02.013
doi: 10.1016/j.ijsolstr.2014.02.013
[80]   Mao GY, Huang XQ, Diab M et al. Nucleation and propagation of voltage-driven wrinkles in an inflated dielectric elastomer balloon. Soft Matter. 2015, 11(33): 6569-6575 doi: 10.1039/C5SM01102G
doi: 10.1039/C5SM01102G
[81]   Meijer K, Rosenthal M, Full RJ . Muscle-like actuators A comparison between three electroactive polymers. Proc SPIE 4329, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (EAPAD). 2001, 4329: 7-15 doi: 10.1117/12.432649
doi: 10.1117/12.432649
[82]   Mockensturm EM, Goulbourne N . Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics. 2006, 41(3): 388-395 doi: 10.1016/j.ijnonlinmec.2005.08.007
doi: 10.1016/j.ijnonlinmec.2005.08.007
[83]   Morrow DA, Donahue TLH, Odegard GM et al. Transversely isotropic tensile material properties of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials. 2010, 3(1): 124-129 doi: 10.1016/j.jmbbm.2009.03.004
doi: 10.1016/j.jmbbm.2009.03.004
[84]   Nguyen CH, Alici G, Mutlu R . A compliant translational mechanism based on dielectric elastomer actuators. Journal of Mechanical Design. 2014, 136(6): 061009 doi: 10.1115/1.4027167
doi: 10.1115/1.4027167
[85]   Niu XF, Leo R, Chen D et al. Multilayer stack actuator made from new prestrain-free dielectric elastomers. Proc SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD), No 86871M http://dxdoiorg/101117/122009561. 2013
[86]   O’Halloran A, O’Malley F, McHugh P . A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics. 2008, 104(7): 071101 doi: 10.1063/1.2981642
doi: 10.1063/1.2981642
[87]   Park HS, Nguyen TD . Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter. 2013, 9(4): 1031-1042 doi: 10.1039/C2SM27375F
doi: 10.1039/C2SM27375F
[88]   Park HS, Suo Z, Zhou J et al. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. International Journal of Solids and Structures. 2012, 49(15-16): 2187-2194 doi: 10.1016/j.ijsolstr.2012.04.031
doi: 10.1016/j.ijsolstr.2012.04.031
[89]   Lochmatter P, Kovacs G, Wissler M . Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sensors and Actuators A: Physical. 2007, 135(2): 748-757 doi: 10.1016/j.sna.2006.08.006
doi: 10.1016/j.sna.2006.08.006
[90]   Pelrine R, Kornbluh R, Pei QB et al. High-speed electrically actuated elastomers with strain greater than 100%. Science. 2000, 287(5454): 836-839 doi: 10.1126/science.287.5454.836
doi: 10.1126/science.287.5454.836
[91]   Pelrine RE, Kornbluh RD, Joseph JP . Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical. 1998, 64(1): 77-85 doi: 10.1016/S0924-4247(97)01657-9
doi: 10.1016/S0924-4247(97)01657-9
[92]   Plante JS, Dubowsky S . Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures. 2006, 43(25-26): 7727-7751 doi: 10.1016/j.ijsolstr.2006.03.026
doi: 10.1016/j.ijsolstr.2006.03.026
[93]   Proulx S, Chouinard P, Bigue JPL et al. Design of a MRI-compatible dielectric elastomer powered jet valve. Proc SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), No 79762C http://dxdoiorg/101117/12880670. 2011
[94]   Qian J, Liu H, Lin Y et al. A mechanochemical model of cell reorientation on substrates under cyclic stretch. PLoS ONE. 2013, 8(6): e65864 doi: 10.1371/journal.pone.0065864
doi: 10.1371/journal.pone.0065864
[95]   Qu SX, Suo ZG . A finite element method for dielectric elastomer transducers. Acta Mechanica Solida Sinica. 2012, 25(5): 459-466 doi: 10.1016/S0894-9166(12)60040-8
doi: 10.1016/S0894-9166(12)60040-8
[96]   Qu SX, Li K, Li TF et al. Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mechanica Solida Sinica. 2012, 25(5): 542-549 doi: 10.1016/S0894-9166(12)60048-2
doi: 10.1016/S0894-9166(12)60048-2
[97]   Reese S, Govindjee S . A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures. 1998, 35(26-27): 3455-3482 doi: 10.1016/S0020-7683(97)00217-5
doi: 10.1016/S0020-7683(97)00217-5
[98]   Reffaee ASA, El Nashar DE, Abd-El-Messieh SL et al. Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Materials & Design. 2009, 30(9): 3760-3769 doi: 10.1016/j.matdes.2009.02.001
doi: 10.1016/j.matdes.2009.02.001
[99]   Rosset S, Niklaus M, Dubois P et al. Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Advanced Functional Materials. 2009, 19(3): 470-478 doi: 10.1002/adfm.200801218
doi: 10.1002/adfm.200801218
[100]   Sarangapani KK, Qian J, Chen WQ et al. Regulation of catch bonds by rate of force application. Journal of Biological Chemistry. 2011, 286(37): 32749-32761 doi: 10.1074/jbc.M111.240044
doi: 10.1074/jbc.M111.240044
[101]   Seki M, Sato K, Haga Y et al. Electrical-properties of acrylic elastomer-LiClO4 complex as a polymeric solid-electrolyte. Macromolecular Chemistry and Physics. 1995, 196(6): 1813-1820 doi: 10.1002/macp.1995.021960602
doi: 10.1002/macp.1995.021960602
[102]   Shankar R, Ghosh TK, Spontak RJ . Dielectric elastomers as next-generation polymeric actuators. Soft Matter. 2007, 3(9): 1116-1129 doi: 10.1039/b705737g
doi: 10.1039/b705737g
[103]   Sheng J, Chen H, Qiang J et al. Thermal, mechanical, and dielectric properties of a dielectric elastomer for actuator applications. Journal of Macromolecular Science, Part B: Physics. 2012, 51(10): 2093-2104 doi: 10.1080/00222348.2012.659617
doi: 10.1080/00222348.2012.659617
[104]   Sheng J, Chen H, Liu L et al. Dynamic electromechanical performance of viscoelastic dielectric elastomers. Journal of Applied Physics. 2013, 114(13): 134101 doi: 10.1063/1.4823861
doi: 10.1063/1.4823861
[105]   Suo ZG . Theory of dielectric elastomers. Acta Mechanica Solida Sinica. 2010, 23(6): 549-578 doi: 10.1016/S0894-9166(11)60004-9
doi: 10.1016/S0894-9166(11)60004-9
[106]   Suo ZG . Mechanics of stretchable electronics and soft machines. MRS Bulletin. 2012, 37(3): 218-225 doi: 10.1557/mrs.2012.32
doi: 10.1557/mrs.2012.32
[107]   Suo ZG, Zhu J . Dielectric elastomers of interpenetrating networks. Applied Physics Letters. 2009, 95(23): 232909 doi: 10.1063/1.3272685
doi: 10.1063/1.3272685
[108]   Suo ZG, Zhao X, Greene WH . A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids. 2008, 56(2): 467-486 doi: 10.1016/j.jmps.2007.05.021
doi: 10.1016/j.jmps.2007.05.021
[109]   Tian L, Tevet-Deree L, deBotton G et al. Dielectric elastomer composites. Journal of the Mechanics and Physics of Solids. 2012, 60(1): 181-198 doi: 10.1016/j.jmps.2011.08.005
doi: 10.1016/j.jmps.2011.08.005
[110]   Tian M, Yan B, Yao Y et al. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity. Journal of Materials Chemistry C. 2014, 2(39): 8388-8397 doi: 10.1039/C4TC01140F
doi: 10.1039/C4TC01140F
[111]   Tutcuoglu A, Majidi C . Energy harvesting with stacked dielectric elastomer transducers: nonlinear theory, optimization, and linearized scaling law. Applied Physics Letters. 2014, 105(24): 214905 doi: 10.1063/1.4904473
doi: 10.1063/1.4904473
[112]   van Loocke M, Lyons CG, Simms CK . Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. Journal of Biomechanics. 2008, 41(7): 1555-1566 doi: 10.1016/j.jbiomech.2008.02.007
doi: 10.1016/j.jbiomech.2008.02.007
[113]   van Loocke M, Simms CK, Lyons CG . Viscoelastic properties of passive skeletal muscle in compression-cyclic behaviour. Journal of Biomechanics. 2009, 42(8): 1038-1048 doi: 10.1016/j.jbiomech.2009.02.022
doi: 10.1016/j.jbiomech.2009.02.022
[114]   Vertechy R, Frisoli A, Bergamasco M et al. Modeling and experimental validation of buckling dielectric elastomer actuators. Smart Materials and Structures. 2012, 21(9): 094005
[115]   Vu-Cong T, Jean-Mistral C, Sylvestre A . New operating limits for applications with electroactive elastomer: effect of the drift of the dielectric permittivity and the electrical breakdown. Proc SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD), No 86871S http://dxdoiorg/101117/122007698. 2013
[116]   Wang H, Cai S, Carpi F et al. Computational model of hydrostatically coupled dielectric elastomer actuators. Journal of Applied Mechanics. 2012, 79(3): 031008 doi: 10.1115/1.4005885
doi: 10.1115/1.4005885
[117]   Wang H, Lei M, Cai S . Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads. Journal of Applied Physics. 2013, 113(21): 213508 doi: 10.1063/1.4807911
doi: 10.1063/1.4807911
[118]   Wang J, Nguyen TD, Park HS . Electrostatically driven creep in viscoelastic dielectric elastomers. Journal of Applied Mechanics. 2014, 81(5): 1847-1858 doi: 10.1115/1.4025999
doi: 10.1115/1.4025999
[119]   Wang Y, Zhou JX, Wu XH et al. Energy diagrams of dielectric elastomer generators under different types of deformation. Chinese Physics Letters. 2013, 30(6): 66103 doi: 10.1088/0256-307X/30/6/066103
doi: 10.1088/0256-307X/30/6/066103
[120]   Wang Y, Chen BH, Bai YY et al. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Applied Physics Letters. 2014, 104(6): 064101 doi: 10.1063/1.4864402
doi: 10.1063/1.4864402
[121]   Wang Y, Zhou JW, Sun WJ et al. Mechanics of dielectric elastomer-activated deformable transmission grating. Smart Materials and Structures. 2014, 23(9): 095010
[122]   Wang YQ, Xue HH, Chen HL et al. A dynamic visco-hyperelastic model of dielectric elastomers and their energy dissipation characteristics. Applied Physics A-Materials Science & Processing. 2013, 112(2): 339-347 doi: 10.1007/s00339-013-7740-1
doi: 10.1007/s00339-013-7740-1
[123]   Wissler M, Mazza E . Modeling and simulation of dielectric elastomer actuators. Smart Materials & Structures. 2005, 14(6): 1396-1402 doi: 10.1088/0964-1726/14/6/032
doi: 10.1088/0964-1726/14/6/032
[124]   Wu X, Sun W, Li B et al. Homogeneous large deformation analysis of a dielectric elastomer peristaltic actuator. Science China-Technological Sciences. 2012, 55(2): 537-541 doi: 10.1007/s11431-011-4645-0
doi: 10.1007/s11431-011-4645-0
[125]   Zhang C, Chen HL, Liu L et al. Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration. Journal of Physics D: Applied Physics. 2015, 48(24): 245502 doi: 10.1088/0022-3727/48/24/245502
doi: 10.1088/0022-3727/48/24/245502
[126]   Zhang J, Chen H, Li B . A method of tuning viscoelastic creep in charge-controlled dielectric elastomer actuation. EPL (Europhysics Letters). 2014, 108(5): 57002 doi: 10.1209/0295-5075/108/57002
doi: 10.1209/0295-5075/108/57002
[127]   Zhang J, Chen H, Sheng J et al. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load. Applied Physics A-Materials Science & Processing. 2014, 116(1): 59-67 doi: 10.1007/s00339-013-8092-6
doi: 10.1007/s00339-013-8092-6
[128]   Zhang WL, Lin Y, Qian J et al. Tuning molecular adhesion via material anisotropy. Advanced Functional Materials. 2013, 23(37): 4729-4738 doi: 10.1002/adfm.201300069
doi: 10.1002/adfm.201300069
[129]   Zhang XQ, Lowe C, Wissler M et al. Dielectric elastomers in actuator technology. Advanced Engineering Materials. 2005, 7(5): 361-367 doi: 10.1002/adem.200500066
doi: 10.1002/adem.200500066
[130]   Zhang Z, Liu LW, Liu YJ et al. Effect of mechanical force field on the electromechanical stability of dielectric elastomers. Science China-Physics Mechanics & Astronomy. 2012, 55(1): 94-101 doi: 10.1007/s11433-011-4537-0
doi: 10.1007/s11433-011-4537-0
[131]   Zhao XH, Suo ZG . Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters. 2007, 91(6): 061921 doi: 10.1063/1.2768641
doi: 10.1063/1.2768641
[132]   Zhao XH, Wang QM . Harnessing large deformation and instabilities of soft dielectrics: theory, experiment, and application. Applied Physics Reviews. 2014, 1(2): 021304 doi: 10.1063/1.4871696
doi: 10.1063/1.4871696
[133]   Zhao XH, Hong W, Suo ZG . Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B. 2007, 76(13): 134113 doi: 10.1103/PhysRevB.76.134113
doi: 10.1103/PhysRevB.76.134113
[134]   Zhao XH, Koh SJA, Suo ZG . Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics. 2011, 3(2): 203-217 doi: 10.1142/S1758825111000944
doi: 10.1142/S1758825111000944
[135]   Zhou JY, Jiang LY, Khayat RE . Failure analysis of a dielectric elastomer plate actuator considering boundary constraints. Journal of Intelligent Material Systems and Structures. 2013, 24(14): 1667-1674 doi: 10.1177/1045389X13483025
doi: 10.1177/1045389X13483025
[136]   Zhou JY, Jiang LY, Khayat RE . Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints. Smart Materials and Structures. 2014, 23(4): 045028
[137]   Zhou JY, Jiang LY, Khayat RE . Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. Journal of Applied Physics. 2014, 115(12): 24106 doi: 10.1063/1.4869666
doi: 10.1063/1.4869666
[138]   Zhu J, Stoyanov H, Kofod G et al. Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics. 2010, 108(7): 074113 doi: 10.1063/1.3490186
doi: 10.1063/1.3490186
[1] Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 335-352.
[2] Hui-ming Wang,Shao-xing Qu. Constitutive models of artificial muscles: a review*[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 22-36.
[3] Da-qiang Gu, Yong Zhou. An approach to the capsule endoscopic robot with active drive motion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 223-231.
[4] Hua-ming WANG, Jing-ying ZHU, Ke-bei YE. Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1296-1304.
[5] Ping-lu CHEN, Xiao-li YU, Lin LIU. Simulation and experimental study of electro-pneumatic valve used in air-powered engine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 377-383.
[6] LIU Gan-bin, XIE Kang-he. Transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 3): 7-.