Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2009, Vol. 10 Issue (9): 1296-1304    DOI: 10.1631/jzus.A0820666
Materials Engineering     
Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator
Hua-ming WANG, Jing-ying ZHU, Ke-bei YE
Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Dielectric elastomer actuators (DEAs) are an emerging class of polymer actuation devices and have extensive application prospect in the field of robotics because of their light weight, high efficiency and large deformation. A cone DEA is manufactured and its working principle is analyzed. To obtain the deformation of elastomer and movement of DEA in advance, a finite element method (FEM) simulation is performed first. According to the working principle, two working equilibrium points of DEA, corresponding to the displacements of DEA with voltage off and on, are obtained and validated by experiments, thus work output in a workcycle is computed. Experiments show that the actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Simulation results agree well with experimental ones and the feasibility of DEA simulation is proved, and causes for the small difference between them in displacement output are analyzed. The performance of the actuator is improved from the aspects of both displacement and force output. A diamond four-bar linkage mechanism is used as the preload part and a displacement output of 17 mm is obtained. The force output of one actuating unit is about 1.77 N, so three actuating units are assembled in parallel and the force output is heightened to as high as 5.07 N.

Key wordsDielectric elastomer (DE)      Actuator      Simulation      Performance improvement     
Received: 17 September 2008     
CLC:  TB34  
  TP271  
Cite this article:

Hua-ming WANG, Jing-ying ZHU, Ke-bei YE. Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1296-1304.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0820666     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2009/V10/I9/1296

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 335-352.
[6] Peng-cheng Yang, Yan-bin Shen, Yao-zhi Luo. Active structures integrated with wireless sensor and actuator networks: a bio-inspired control framework[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 253-272.
[7] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[8] Feng-bo Zhu, Chun-li Zhang, Jin Qian, Wei-qiu Chen. Mechanics of dielectric elastomers: materials, structures, and devices[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 1-21.
[9] Antoine Dumas, Jean-Yves Dantan, Nicolas Gayton, Thomas Bles, Robin Loebl. An iterative statistical tolerance analysis procedure to deal with linearized behavior models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 353-360.
[10] Chun-ping Gu, Guang Ye, Wei Sun. A review of the chloride transport properties of cracked concrete: experiments and simulations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 81-92.
[11] Wei-yun Shao, Li-jie Jiang, Lei Fang, David Z. Zhu, Zhi-lin Sun. Assessment of the safe evacuation of people walking through flooding staircases based on numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 117-130.
[12] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[13] Xiang-lei Zhang, Bin Yao, Wei Feng, Zhi-huang Shen, Meng-meng Wang. Modeling of a virtual grinding wheel based on random distribution of multi-grains and simulation of machine-process interaction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 874-884.
[14] Ming-xiang Yang, Yun-zhong Jiang, Xing Lu, Hong-li Zhao, Yun-tao Ye, Yu Tian. A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 18-37.
[15] Xiang Hu, Li Xie, Chuang Mi, Dian-hai Yang. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 743-752.