Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (5): 382-394    DOI: 10.1631/jzus.A1100250
Chemical Engineering     
Multi-objective process parameter optimization for energy saving in injection molding process
Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Control Engineering and Science, Zhejiang University, Hangzhou 310027, China; School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process. It combines an experimental design by Taguchi’s method, a process analysis by analysis of variance (ANOVA), a process modeling algorithm by artificial neural network (ANN), and a multi-objective parameter optimization algorithm by genetic algorithm (GA)-based lexicographic method. Local and global Pareto analyses show the trade-off between product quality and energy consumption. The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests, and at the same time, the product quality can meet the pre-determined requirements.

Key wordsInjection molding process      Energy saving      Multi-objective optimization      Genetic algorithm      Lexicographic method     
Received: 02 November 2011      Published: 04 May 2012
CLC:  TP277  
Cite this article:

Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu. Multi-objective process parameter optimization for energy saving in injection molding process. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 382-394.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100250     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I5/382

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Yao-bin Zhuo, Xue-yan Xiang, Xiao-jun Zhou, Hao-liang Lv, Guo-yang Teng. A method for the global optimization of the tooth contact pattern and transmission error of spiral bevel and hypoid gears[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 377-392.
[3] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[4] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[5] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[6] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[7] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[8] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.
[9] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[10] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[11] Xiao-lei Dong, Sui-qing Liu, Tao Tao, Shu-ping Li, Kun-lun Xin. A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 674-686.
[12] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[13] Med Amine Laribi, Lotfi Romdhane, Sa?d Zeghloul. Analysis and optimal synthesis of single loop spatial mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(9): 665-679.
[14] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[15] Hai-en Fang, Jie Zhang, Jin-liang Gao. Optimal operation of multi-storage tank multi-source system based on storage policy[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 571-579.