Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2003, Vol. 4 Issue (6): 719-726    DOI: 10.1631/jzus.2003.0719
Materials & Biotechnology     
Optimization of cultural conditions for thermostable β-1,3-1,4-glucanase production by Bacillus subtilis ZJF-1A5
HE Guo-qing, TANG Xing-jun, MUKHTAR A. M. Ali, CHEN Qi-he
College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029 China; Department of Food Science, Sana\'a University, Republic of Yemen
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The optimization of cultural conditions for β-glucanase production by Bacillus subtilis ZJF-1A5 was investigated in flask trials. Temperature had great effect on β-glucanase production which maximized at optimal temperature of 37 °C and decreased significantly when temperature was over 37 °C. Charge quantity affected β-glucanase production significantly. Adding oxygen vector N-dodecane or acetic ether benefited β-glucanase production, but it depended on the concentration and charge quantity. The results of fractional factorial design showed that age and size of inoculum and shaking speed were the key factors affecting β-glucanase production and the cultivation time span to reach the highest β-glucanase activity. The optimal cultural conditions for β-glucanase production obtained with CCD were as follows: inoculum age and size (16 h, 3.82%(v/v)), shaking speed 2 10 r/min, charge quantity of 30 mL in 250 mL flask and initial pH 7.0, cultured at 37 °C for 50 h. Repeated experimental results accorded with those predicted by a second-order polynomial model. The amount of β-glucanase, α-amylase and neutral protease produced by B subtilis ZJF-1A5 was associated partially with cell growth. Those three enzymes\' activities increased following the cell growth and increased significantly when cells entered the stationary phase.

Key wordsβ-glucanase      Bacillus subtilis      Optimization      Response surface methodology      Cultivation conditions     
Received: 02 September 2002     
CLC:  Q936  
Cite this article:

HE Guo-qing, TANG Xing-jun, MUKHTAR A. M. Ali, CHEN Qi-he. Optimization of cultural conditions for thermostable β-1,3-1,4-glucanase production by Bacillus subtilis ZJF-1A5. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(6): 719-726.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2003.0719     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2003/V4/I6/719

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[3] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[4] Bao-tong Li, Su-na Yan, Jun Hong. A growth-based topology optimizer for stiffness design of continuum structures under harmonic force excitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 933-946.
[5] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[6] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[7] Liang Ye, Yin-fu Jin, Shui-long Shen, Ping-ping Sun, Cheng Zhou. An efficient parameter identification procedure for soft sensitive clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 76-88.
[8] Antoine Dumas, Jean-Yves Dantan, Nicolas Gayton, Thomas Bles, Robin Loebl. An iterative statistical tolerance analysis procedure to deal with linearized behavior models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 353-360.
[9] Qing-long Meng, Xiu-ying Yan, Qing-chang Ren. Global optimal control of variable air volume air-conditioning system with iterative learning: an experimental case study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 302-315.
[10] Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao. Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(3): 241-249.
[11] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[12] Abbas Al-Refaie. Applying process analytical technology framework to optimize multiple responses in wastewater treatment process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(5): 374-384.
[13] Chang-yu Cui, Bao-shi Jiang, You-bao Wang. Node shift method for stiffness-based optimization of single-layer reticulated shells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 97-107.
[14] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[15] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.