Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2006, Vol. 7 Issue (3 ): 20-    DOI: 10.1631/jzus.2006.A0398
    
Floating-roof steel tanks under harmonic settlement: FE parametric study and design criterion
Zhao Yang, Cao Qing-shuai, Xie Xin-yu
Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Large vertical steel tanks for fluid storage are usually constructed on soft foundations, so it is not surprising that the tank wall will settle unevenly with the settlement of the foundation, thus inducing deformations and stresses in the tank. This work investigates the linear static behavior of floating-roof tanks under harmonic settlement through finite element (FE) analyses. The influences of the radius-to-thickness ratio, the height-to-radius ratio and the wind girder stiffness on the structural behavior are first analyzed. Comparisons between the circumferential stresses in the wind girder and the vertical stresses in the tank bottom are then made. The displacement and the stress along the tank height are also discussed, and the concept of tank division along its height is presented. Finally, a design approximation for the radial displacement at the tank top is developed based on FE results, and a settlement criterion based on the top radial displacement is proposed which can be used in practical design.

Key wordsSteel tanks      Floating-roof      Differential settlement      Harmonic settlement      Finite element analysis      Design criterion     
CLC:  TU33  
Cite this article:

Zhao Yang, Cao Qing-shuai, Xie Xin-yu. Floating-roof steel tanks under harmonic settlement: FE parametric study and design criterion. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(3 ): 20-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.A0398     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2006/V7/I3 /20

[1] Yao-bin Zhuo, Xue-yan Xiang, Xiao-jun Zhou, Hao-liang Lv, Guo-yang Teng. A method for the global optimization of the tooth contact pattern and transmission error of spiral bevel and hypoid gears[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 377-392.
[2] Chih-Hung Chen, Hsuan-Teh Hu, Fu-Ming Lin, Hsin-Hsin Hsieh. Residual stress analysis and bow simulation of crystalline silicon solar cells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 49-58.
[3] Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 989-999.
[4] Jin Zhang, Qing-feng Xu, Yi-xiang Xu, Bin Wang, Jing-xiang Shang. A numerical study on fire endurance of wood beams exposed to three-side fire[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 491-505.
[5] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[6] Hai-tao Li, Andrew John Deeks, Li-xin Liu, Dong-sheng Huang, Xiao-zu Su. Moment transfer factors for column-supported cast-in-situ hollow core slabs[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(3): 165-173.
[7] Chen-xi Xing, Hao Wang, Ai-qun Li, Ji-rong Wu. Design and experimental verification of a new multi-functional bridge seismic isolation bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 904-914.
[8] Al Emran Ismail, Ahmad Kamal Ariffin, Shahrum Abdullah, Mariyam Jameelah Ghazali, Mohammed Abdulrazzaq, Ruslizam Daud. Stress intensity factors under combined bending and torsion moments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 1-8.
[9] Tie-yu Gao, Dong-fang Yang, Feng Cao, Jin-cheng Jiao. Temperature and thermodynamic deformation analysis of the rotors on a twin screw multiphase pump with high gas volume fractions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(9): 720-730.
[10] Daisuke Maruyama, Hitoshi Kimura, Michihiko Koseki, Norio Inou. Driving force and structural strength evaluation of a flexible mechanical system with a hydrostatic skeleton[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 255-262.
[11] Peng-fei Zhao, Fu-lin Shang. Experimental study on the interfacial delamination in a thermal barrier coating system at elevated temperatures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 794-803.
[12] Cheng-zhi FAN, Ming-xing HUANG, Yun-yue YE. Research and industrial application of a novel compound permanent magnet synchronous machine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 471-477.
[13] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[14] Peng-fei LIU, Jin-yang ZHENG, Li MA, Cun-jian MIAO, Lin-lin WU. Calculations of plastic collapse load of pressure vessel using FEA[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 900-906.
[15] Xiao LIU, Yun-yue YE, Zhuo ZHENG, Qin-fen LU. Magnetic field and performance analysis of a tubular permanent magnet linear synchronous motor applied in elevator door system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 572-576.