Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (1): 65-75    DOI: 10.1631/jzus.A1500178
    
Evaluation of the critical stress of anodized coating-AZ91D substrate using SEM in-situ technology
Xi-shu Wang1,(),Xing-wu Guo2,Yuzo Nakamura3,Hui-hui Yang1,Pan Pan1
1Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
2National Engineering Research Center for Light Alloy Net Forming, School of Material Science & Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
3Department of Mechanical Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Download: HTML     PDF(1928KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Experimental investigations of the micro cracking behavior of a coating-substrate structure were carried out in-situ with a scanning electron microscope (SEM). An anodized coating layer was deposited on an AZ91D substrate by the galvanize pulse method. Results indicated that the failure mechanism of the coating-substrate structure was due to a mismatch of micro deformation between the coating and substrate. The micro deformations induced by different failure models were cracking, spalling, or delamination. The failure models were validated using theoretical, experimental, and digital image correlation methods. The critical stress of failure can be evaluated by measuring the biaxial stress.



Key wordsMagnesium alloy      Anodized coating      Material mechanics      Flexural stress      Cracking behavior     
Received: 13 June 2015      Published: 06 January 2016
Fund:  the National Natural Science Foundation of China(No. 11272173,11572170);the Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University, China(No. TPL1503)
Corresponding Authors: Xi-shu Wang     E-mail: xshwang@tsinghua.edu.cn
Cite this article:

Xi-shu Wang,Xing-wu Guo,Yuzo Nakamura,Hui-hui Yang,Pan Pan. Evaluation of the critical stress of anodized coating-AZ91D substrate using SEM in-situ technology. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 65-75.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500178     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I1/65

Fig. 1 A schematic of the coating-substrate structure based on SEM in-situ technology (a) Shape and size of the sample; (b) Experimental methodology; (c) Mechanics model of a two-layer-laminated beam. L is the span length, Mz is the bending moment, hc and hs are the thickness of the coating and substrate, respectively, d is the displacement of neutral axis, and P is the applied loading
Fig. 2 Microstructures at the interface and surface of the coating-substrate structure (a) Cross-section image (scale bar 10 µm); (b) Free surface image (scale bar 5 µm)
Coating-substrate system E (GPa) Poisson’s ratio σ0.2 (MPa) σb (MPa) δ (%)
Coating-substrate in 330 V 42 0.385 100 169 5.7
Coating-substrate in 350 V 42 0.385 96 164 5.1
AZ91D bulk substrate 42 0.390 170 203 10.2
Coating layer 37 0.350
Table 1 Mechanical properties of the anodized coating-substrate structure
Fig. 3 Relationship between flexural stress and stroke displacement
Fig. 4 Relationship between flexural stress and flexural radius
Fig. 5 Enlarged microstructure near the interface region (the flexural stress is 65 MPa, scale bar is 5 µm)
Fig. 6 SEM image at flexural stress (88 MPa) based on Eq. (7) (scale bar is 10 µm)
Fig. 7 (a) SEM image at the flexural stress (100 MPa) based on Eq. (7) (scale bar is 50 µm); (b) SEM image at the flexural stress (23 MPa) based on Eq. (7) (scale bar is 500 µm, R=300 mm)
Fig. 8 Strain distributions near the interface based on DICM technology
[1]   Dahle AK, Lee YC, Nave MD et al. Development of the as-cast microstructure in magnesium-aluminum alloys. Journal of Light Metals. 2001, 1(1): 61-72 doi: 10.1016/S1471-5317(00)00007-9
doi: 10.1016/S1471-5317(00)00007-9
[2]   Dean J, Gu T, Clyne TW . Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surface & Coatings Technology. 2015, 269: 47-53 doi: 10.1016/j.surfcoat.2014.11.006
doi: 10.1016/j.surfcoat.2014.11.006
[3]   Eberl C, Gianola DS, Hemker KJ . Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Experimental Mechanics. 2010, 50(1): 85-97 doi: 10.1007/s11340-008-9187-4
doi: 10.1007/s11340-008-9187-4
[4]   Eifert AJ, Thomas JP, Rateick RG . Influence of anodization on the fatigue life of WE43A-T6 magnesium. Scripta Materialia. 1999, 40(8): 929-935 doi: 10.1016/S1359-6462(99)00040-8
doi: 10.1016/S1359-6462(99)00040-8
[5]   Fawcett N . A novel method for the measurement of Young’s modulus for thick-film resistor material by flexural testing of coated beams. Materials Science and Technology. 1998, 9: 2023-2026 doi: 10.1088/0957-0233/9/12/015
doi: 10.1088/0957-0233/9/12/015
[6]   Guo XW, Chang JW, He SM et al. Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions. Electrochimica Acta. 2007, 52(7): 2570-2579 doi: 10.1016/j.electacta.2006.09.010
doi: 10.1016/j.electacta.2006.09.010
[7]   Huang JG, Wang XS, Meng XK . SEM in situ study on deformation behavior of Cu and Cu/Ni films under three-point bending. Materials Transactions. 2007, 48(10): 2795-2798 doi: 10.2320/matertrans.MRP2007069
doi: 10.2320/matertrans.MRP2007069
[8]   Hutchinson JW, Suo Z . Hutchinson JW, Wu TY . Mixed mode cracking in layered materials. Advances in Applied Mechanics. 1991, USA, Academic Press: 63-191
[9]   Jia S, Wang XS, Ren HH . Experimental and theoretical analysis of package (PoP) structure under three points bending loading. Chinese Physics B. 2012, 21(12): 126201 doi: 10.1088/1674-1056/21/12/126201
doi: 10.1088/1674-1056/21/12/126201
[10]   Konsta-Gdoutos MS, Gdoutos EE . The effect of load and geometry on the failure models of sandwich beams. Applied Composite Materials. 2005, 12(3-4): 165-176 doi: 10.1007/s10443-005-1120-8
doi: 10.1007/s10443-005-1120-8
[11]   Khan RHU, Yerokhin AL, Pikington A et al. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface & Coatings Technology. 2005, 200(5-6): 1580-1594 doi: 10.1016/j.surfcoat.2005.08.092
doi: 10.1016/j.surfcoat.2005.08.092
[12]   Li H, Khor KA, Cheang P . Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surface and Coatings Technology. 2002, 155(1): 21-32 doi: 10.1016/S0257-8972(02)00026-9
doi: 10.1016/S0257-8972(02)00026-9
[13]   Li JY, Lau A, Fok ASL . Application of digital image correlation to full-field measurement of shrinage strain of dental composites. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2013, 14(1): 1-10 doi: 10.1631/jzus.A1200274
doi: 10.1631/jzus.A1200274
[14]   Li Y, Wang XS, Meng XK . Buckling behavior of metal film/substrate structure under pure bending. Applied Physics Letters. 2008, 92(13): 131902 doi: 10.1063/1.2897035
doi: 10.1063/1.2897035
[15]   Li Y, Wang XS, Fan QS . Effects of elastic anisotropic on the surface stability of the film/substrate system. International Journal of Engineering Science. 2008, 46(12): 1325-1333 doi: 10.1016/j.ijengsci.2008.07.008
doi: 10.1016/j.ijengsci.2008.07.008
[16]   Ma SP, Jin GC . Digital speckle correlation method improved by genetic algorithm. Acta Mechanics Solida Sinica. 2003, 16(4): 366-373
[17]   Michler J, Blank E . Analysis of coating fracture and substrate plasticity induced by spherical indentors: diamond and diamond-like carbon layers on steel substrates. Thin Solid Films. 2001, 381(1): 119-134 doi: 10.1016/S0040-6090(00)01340-7
doi: 10.1016/S0040-6090(00)01340-7
[18]   Mordike BL, Ebert T . Magnesium properties–applications–potential. Materials Science and Engineering: A. 2001, 302(1): 37-45 doi: 10.1016/S0921-5093(00)01351-4
doi: 10.1016/S0921-5093(00)01351-4
[19]   Nykyforchyn HM, Klapkiv MD, Posuvailo VM . Properties of synthesised oxide ceramic coatings in electrolyte plasma on aluminium alloys. Surface & Coatings Technology. 1998, 100-101: 219-221 doi: 10.1016/S0257-8972(97)00617-8
doi: 10.1016/S0257-8972(97)00617-8
[20]   Rajasekaran B, Raman SGS, Krishna LR et al. Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy. Surface & Coatings Technology. 2008, 202(8): 1462-1469 doi: 10.1016/j.surfcoat.2007.06.058
doi: 10.1016/j.surfcoat.2007.06.058
[21]   Ren HH, Wang XS . Fatigue damage behavior of a surface-mount electronic package under different cyclic loadings. Chinese Physics B. 2014, 23(4): 044601 doi: 10.1088/1674-1056/23/4/044601
doi: 10.1088/1674-1056/23/4/044601
[22]   Ren HH, Wang XS, Jia S . Fracture analysis on die attach adhesives for stacked packages based on in-situ testing and cohesive zone model. Microelectronics Reliability. 2013, 53(7): 1021-1028 doi: 10.1016/j.microrel.2013.04.001
doi: 10.1016/j.microrel.2013.04.001
[23]   Schwaiger R, Kraft O . Size effects in the fatigue behavior of thin Ag films. Acta Materialia. 2003, 51(1): 195-202 doi: 10.1016/S1359-6454(02)00391-9
doi: 10.1016/S1359-6454(02)00391-9
[24]   Sharpe WN, Pulskamp J, Gianola DS et al. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Experimental Mechanics. 2007, 47(5): 649-658 doi: 10.1007/s11340-006-9010-z
doi: 10.1007/s11340-006-9010-z
[25]   Stoney GG . The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1909, 82(553): 172-175 doi: 10.1098/rspa.1909.0021
doi: 10.1098/rspa.1909.0021
[26]   Tang B, Li SS, Wang XS et al. Effect of Ca/Sr composite addition into AZ91D alloy on hot-crack mechanism. Scripta Materialia. 2005, 53(9): 1077-1082 doi: 10.1016/j.scriptamat.2005.06.039
doi: 10.1016/j.scriptamat.2005.06.039
[27]   Tvergaard V . Crack growth predications by cohesive zone model for ductile fracture. Journal of the Mechanics and Physics of Solids. 2001, 49(9): 2191-2207 doi: 10.1016/S0022-5096(01)00030-8
doi: 10.1016/S0022-5096(01)00030-8
[28]   Tvergaard V . Prediction of mixed mode interface crack growth using a cohesive zone model for ductile fracture. Journal of The Mechanics and Physics of Solids. 2004, 52(4): 925-940 doi: 10.1016/S0022-5096(03)00115-7
doi: 10.1016/S0022-5096(03)00115-7
[29]   Vendroux G, Knauss WG . Submicron deformation field measurement: Part 2. Improved digital image correlation. Experimental Mechanics. 1998, 38(2): 86-92 doi: 10.1007/BF02321649
doi: 10.1007/BF02321649
[30]   Wang HW, Kang YL . Improved digital speckle correlation method and its application in fracture analysis of metallic foil. Optical Engineering. 2002, 41(11): 2793-2798 doi: 10.1117/1.1511749
doi: 10.1117/1.1511749
[31]   Wang XS, Xu Y . Mechanical characterizations of the dispersion U3Si2-Al fuel plate with sandwich structure under tensile loading. Applied Composite Materials. 2003, 10(3): 159-167 doi: 10.1023/A:1023978413329
doi: 10.1023/A:1023978413329
[32]   Wang XS, Xu Y . Experiments, characterizations and analysis of a dispersion U3Si2-Al fuel plate with sandwich structure. Journal of Nuclear Materials. 2004, 328(2-3): 243-248 doi: 10.1016/j.jnucmat.2004.04.332
doi: 10.1016/j.jnucmat.2004.04.332
[33]   Wang XS, Fan JH . An evaluation the growth rate of small fatigue cracks in cast AM50 magnesium alloy at different temperature in vacuum environment. International Journal of Fatigue. 2006, 28(1): 79-86 doi: 10.1016/j.ijfatigue.2005.03.004
doi: 10.1016/j.ijfatigue.2005.03.004
[34]   Wang XS, Xu Y, Xu XQ . Direct observations of microcracking in the fuel plate using the scanning electron microscope. Applied Composite Materials. 2004, 11(3): 145-154 doi: 10.1023/B:ACMA.0000026478.76133.7a
doi: 10.1023/B:ACMA.0000026478.76133.7a
[35]   Wang XS, Li Y, Meng XK . An estimation method on failure stress of micro thickness Cu film-substrate structure. Science in China Series E: Technological Sciences. 2009, 52(8): 2210-2215 doi: 10.1007/s11431-009-0235-9
doi: 10.1007/s11431-009-0235-9
[36]   Wang XS, Guo XW, Li XD et al. Improvement on the fatigue performance of 2024-T4 alloy by synergistic coating technology. Materials. 2014, 7(5): 3533-3546 doi: 10.3390/ma7053533
doi: 10.3390/ma7053533
[37]   Wang XS, Li XD, Yang HH et al. Environment-induced fatigue cracking behavior of aluminum alloys and modification methods. Corrosion Reviews. 2015, 33(3-4): 119-137 doi: 10.1515/corrrev-2014-0057
doi: 10.1515/corrrev-2014-0057
[38]   Yan G, White JR . Residual stress development in a Bi-layer coating. Polymer Engineering and Science. 1999, 39(10): 1856-1865 doi: 10.1002/pen.11579
doi: 10.1002/pen.11579
[39]   Yang C, Shen YB, Luo YZ . An efficient numerical shape analysis for light weight membrane structures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2014, 15(4): 255-271 doi: 10.1631/jzus.A1300245
doi: 10.1631/jzus.A1300245
[40]   Yerokhin AL, Nie X, Leyland A et al. Plasma electrolysis for surface engineering-Review. Surface & Coatings Technology. 1999, 122(2-3): 73-93 doi: 10.1016/S0257-8972(99)00441-7
doi: 10.1016/S0257-8972(99)00441-7
[41]   Yerokhin AL, Shatrov A, Samsonov V et al. Fatigue properties of Keronite coating on a magnesium alloy. Surface & Coatings Technology. 2004, 182(1): 78-84 doi: 10.1016/S0257-8972(03)00877-6
doi: 10.1016/S0257-8972(03)00877-6
[42]   Yerokhin AL, Shatrov A, Samsonov V et al. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface & Coatings Technology. 2005, 199(2-3): 150-157 doi: 10.1016/j.surfcoat.2004.10.147
doi: 10.1016/j.surfcoat.2004.10.147
[43]   Zhao MH, Fu R, Lu D et al. Critical thickness for cracking of Pb(Zr0.53Ti0.47)O3 thin films deposited on Pt/Ti/Si(1100) substrates. Acta Materialia. 2002, 50(17): 4241-4254 doi: 10.1016/S1359-6454(02)00254-9
doi: 10.1016/S1359-6454(02)00254-9
[1] X.H. Du, Y.C. Chang, H.J. Pei, B.Y. Chen, M.C. Kuo, J.C. Huang. Coating behavior and surface hardening of Pd77Cu6Si17 thin film metallic glass on AZ31 magnesium alloy[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 898-905.
[2] Yun-sheng Zhang, Wei Sun, Zhi-yong Liu, Shu-dong Chen. One and two dimensional chloride ion diffusion of fly ash concrete under flexural stress[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(9): 692-701.
[3] H. Wang, P. D. Wu, K. W. Neale. On the role of the constitutive model and basal texture on the mechanical behaviour of magnesium alloy AZ31B sheet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 744-755.