|
|
An efficient parameter identification procedure for soft sensitive clays |
Liang Ye1,†( ),Yin-fu Jin2,3,†( ),Shui-long Shen2,Ping-ping Sun4,Cheng Zhou5 |
1 Department of Civil Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China 2 State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3 LUNAM University, Ecole Centrale de Nantes, GeM UMR CNRS, 6183, Nantes, France 4 Department of Civil Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China 5 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China |
|
|
Abstract The creep and destructuration characteristics of soft clay are always coupled under loading, making it difficult for engineers to determine these related parameters. This paper proposes a simple and efficient optimization procedure to identify both creep and destructuration parameters based on low cost experiments. For this purpose, a simplex algorithm (SA) with random samplings is adopted in the optimization. Conventional undrained triaxial tests are performed on Wenzhou clay. The newly developed creep model accounting for the destructuration is enhanced by anisotropy of elasticity and adopted to simulate tests. The optimal parameters are validated first by experimental measurements, and then by simulating other tests on the same clay. Finally, the proposed procedure is successfully applied to soft Shanghai clay. The results demonstrate that the proposed optimization procedure is efficient and reliable in identifying creep and destructuration related parameters.
|
Received: 05 February 2015
Published: 06 January 2016
|
Fund: the National Natural Science Foundation of China(No. 41372283);the European Project CREEP(No. PIAPP-GA-2011-286397);the French Ministry of Research through ANR-RISMOGEO |
Corresponding Authors:
Liang Ye,Yin-fu Jin
E-mail: yeliang88@126.com;yinfu.jin9019@gmail.com
|
|
|
[1] |
ASTM (American Society for Testing and Materials) Annual Book of ASTM Standards. 2004, Philadelphia, PA, USA: ASTM
|
|
|
[2] |
Biarez J, Hicher PY . Elementary mechanics of soil behaviour: saturated remoulded soils. 1994, Rotterdam, the Netherlands: AA Balkema
|
|
|
[3] |
Calvello M, Finno RJ . Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics. 2004, 31(5): 410-424 doi: 10.1016/j.compgeo.2004.03.004
doi: 10.1016/j.compgeo.2004.03.004
|
|
|
[4] |
Chang CS, Yin ZY . Micromechanical modeling for inherent anisotropy in granular materials. Journal of Engineering Mechanics. 2010, 136(7): 830-839 doi: 10.1061/(ASCE)EM.1943-7889.0000125
doi: 10.1061/(ASCE)EM.1943-7889.0000125
|
|
|
[5] |
Dano C, Hicher PY, Rangeard D et al. Interpretation of dilatometer tests in a heavy oil reservoir. International Journal for Numerical and Analytical Methods in Geomechanics. 2007, 31(10): 1197-1215 doi: 10.1002/nag.583
doi: 10.1002/nag.583
|
|
|
[6] |
Huang M, Liu Y, Sheng D . Simulation of yielding and stress–stain behavior of Shanghai soft clay. Computers and Geotechnics. 2011, 38(3): 341-353 doi: 10.1016/j.compgeo.2010.12.005
doi: 10.1016/j.compgeo.2010.12.005
|
|
|
[7] |
Karstunen M, Yin ZY . Modelling time-dependent behaviour of Murro test embankment. Géotechnique. 2010, 60(10): 735-749 doi: 10.1680/geot.8.P.027
doi: 10.1680/geot.8.P.027
|
|
|
[8] |
Lagarias JC, Reeds JA, Wright MH et al. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization. 1998, 9(1): 112-147 doi: 10.1137/S1052623496303470
doi: 10.1137/S1052623496303470
|
|
|
[9] |
Lecampion B, Constantinescu A, Nguyen Minh D . Parameter identification for lined tunnels in a viscoplastic medium. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 26(12): 1191-1211 doi: 10.1002/nag.241
doi: 10.1002/nag.241
|
|
|
[10] |
Leroueil S, Vaughan PR . The general and congruent effects of structure in natural soils and weak rocks. Géotechnique. 1990, 40(3): 467-488 doi: 10.1680/geot.1990.40.3.467
doi: 10.1680/geot.1990.40.3.467
|
|
|
[11] |
Levasseur S, Malécot Y, Boulon M et al. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(2): 189-213 doi: 10.1002/nag.614
doi: 10.1002/nag.614
|
|
|
[12] |
McKay MD, Beckman RJ, Conover WJ . Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979, 21(2): 239-245 doi: 10.1080/00401706.1979.10489755
doi: 10.1080/00401706.1979.10489755
|
|
|
[13] |
Nelder JA, Mead R . A simplex method for function minimization. The Computer Journal. 1965, 7(4): 308-313 doi: 10.1093/comjnl/7.4.308
doi: 10.1093/comjnl/7.4.308
|
|
|
[14] |
Papon A, Riou Y, Dano C et al. Single- and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics. 2012, 36(5): 597-618 doi: 10.1002/nag.1019
doi: 10.1002/nag.1019
|
|
|
[15] |
Sheng D, Sloan S, Yu H . Aspects of finite element implementation of critical state models. Computational Mechanics. 2000, 26(2): 185-196 doi: 10.1007/s004660000166
doi: 10.1007/s004660000166
|
|
|
[16] |
Wang L, Yin Z . Stress dilatancy of natural soft clay under an undrained creep condition. International Journal of Geomechanics. 2015, 15(5): A4014002 doi: 10.1061/(ASCE)GM.1943-5622.0000271
doi: 10.1061/(ASCE)GM.1943-5622.0000271
|
|
|
[17] |
Yin ZY, Hicher PY . Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(12): 1515-1535 doi: 10.1002/nag.684
doi: 10.1002/nag.684
|
|
|
[18] |
Yin ZY, Chang CS . Microstructural modelling of stress-dependent behaviour of clay. International Journal of Solids and Structures. 2009, 46(6): 1373-1388 doi: 10.1016/j.ijsolstr.2008.11.006
doi: 10.1016/j.ijsolstr.2008.11.006
|
|
|
[19] |
Yin ZY, Karstunen M . Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mechanica Solida Sinica. 2011, 24(3): 216-230 doi: 10.1016/S0894-9166(11)60023-2
doi: 10.1016/S0894-9166(11)60023-2
|
|
|
[20] |
Yin ZY, Wang JH . A one-dimensional strain-rate based model for soft structured clays. Science China Technological Sciences. 2012, 55(1): 90-100 doi: 10.1007/s11431-011-4513-y
doi: 10.1007/s11431-011-4513-y
|
|
|
[21] |
Yin ZY, Chang CS, Karstunen M et al. An anisotropic elastic-viscoplastic model for soft clays. International Journal of Solids and Structures. 2010, 47(5): 665-677 doi: 10.1016/j.ijsolstr.2009.11.004
doi: 10.1016/j.ijsolstr.2009.11.004
|
|
|
[22] |
Yin ZY, Karstunen M, Hicher PY . Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays. Soils and Foundations. 2010, 50(2): 203-214 doi: 10.3208/sandf.50.203
doi: 10.3208/sandf.50.203
|
|
|
[23] |
Yin ZY, Chang CS, Hicher PY . Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. International Journal of Solids and Structures. 2010, 47(14-15): 1933-1951 doi: 10.1016/j.ijsolstr.2010.03.028
doi: 10.1016/j.ijsolstr.2010.03.028
|
|
|
[24] |
Yin ZY, Karstunen M, Chang CS et al. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering. 2011, 137(11): 1103-1113 doi: 10.1061/(ASCE)GT.1943-5606.0000527
doi: 10.1061/(ASCE)GT.1943-5606.0000527
|
|
|
[25] |
Yin ZY, Hattab M, Hicher PY . Multiscale modeling of a sensitive marine clay. International Journal for Numerical and Analytical Methods in Geomechanics. 2011, 35(15): 1682-1702 doi: 10.1002/nag.977
doi: 10.1002/nag.977
|
|
|
[26] |
Yin ZY, Xu Q, Chang CS . Modeling cyclic behavior of clay by micromechanical approach. Journal of Engineering Mechanics. 2013, 139(9): 1305-1309 doi: 10.1061/(ASCE)EM.1943-7889.0000516
doi: 10.1061/(ASCE)EM.1943-7889.0000516
|
|
|
[27] |
Yin ZY, Zhu QY, Yin JH et al. Stress relaxation coefficient and formulation for soft soils. Géotechnique Letters. 2014, 4(1): 45-51 doi: 10.1680/geolett.13.00070
doi: 10.1680/geolett.13.00070
|
|
|
[28] |
Yin ZY, Xu Q, Yu C . Elastic viscoplastic modeling for natural soft clays considering nonlinear creep. International Journal of Geomechanics. 2015, 15(5): A6014001 doi: 10.1061/(ASCE)GM.1943-5622.0000284
doi: 10.1061/(ASCE)GM.1943-5622.0000284
|
|
|
[29] |
Yin ZY, Yin JH, Huang HW . Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Marine Georesources and Geotechnology. 2015, 33(1): 79-91 doi: 10.1080/1064119X.2013.797060
doi: 10.1080/1064119X.2013.797060
|
|
|
[30] |
Zeng LL . Deformation Mechanism and Compression Model of Natural Clays. 2010 Southeast University, Nanjing, China PhD Thesis (in Chinese)
|
|
|
[31] |
Zhu QY, Jin YF, Yin ZY et al. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2013, 14(11): 767-777 doi: 10.1631/jzus.A1300156
doi: 10.1631/jzus.A1300156
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|