Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (7): 506-518    DOI: 10.1631/jzus.A1100334
Civil Engineering     
Theoretical elastoplastic analysis for foundations with geosynthetic-encased columns
Yuan-yu Duan, Yi-ping Zhang, Dave Chan, Ya-nan Yu
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  As a new technique in ground improvement, geosynthetic-encased columns (GECs) have promising applications in soft soil foundation. By assuming yielding occurs in the columns while the surrounding soil and the geosynthetic remain elastic, an elastoplastic analytical procedure for foundations improved by GECs is proposed. The radial stresses that the geosynthetic provides and the elastoplastic deformations of the foundation resting on a rigid base are derived. A comparison with finite element analysis shows that the proposed method is effective and can provide a reasonable prediction of a GEC’s deformation. Subsequent parametric analysis indicates that higher geosynthetic stiffness leads to better performance of the composite foundation. The optimum length of encasement is related to the load acting on the foundation and the permissible vertical and radial displacements of the column. Moreover, as the dilation angle of the column increases, the settlement decreases, especially under high loading. The influence of the encasement is more significant in soils with smaller elastic modulus.

Key wordsGeosynthetic-encased columns (GECs)      Equal vertical strain      Elastoplastic deformation      Analytical procedure     
Received: 19 December 2011      Published: 03 July 2012
CLC:  TU4  
Cite this article:

Yuan-yu Duan, Yi-ping Zhang, Dave Chan, Ya-nan Yu. Theoretical elastoplastic analysis for foundations with geosynthetic-encased columns. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 506-518.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100334     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I7/506

[1] Dan-da Shi, Jian-feng Xue, Zhen-ying Zhao, Yan-cheng Yang. Effect of bedding direction of oval particles on the behavior of dense granular assemblies under simple shear[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 346-362.
[2] Zhen-ya Li, Kui-hua Wang, Wen-bing Wu, Chin Jian Leo. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 974-988.
[3] Wei Liu, Bettina Albers, Yu Zhao, Xiao-wu Tang. Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 886-902.
[4] Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi. A column system for modeling bentonite slurry infiltration in sands[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 818-827.
[5] Chi Guan, Hai-jian Xie, Zhan-hong Qiu, Yun-min Chen, Pei-xiong Chen. One-dimensional coupled model for landfill gas and water transport in layered unsaturated soil cover systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 667-676.
[6] Teng-fei Wang, Jian-kun Liu, Hua-gang Zhao, Ya-long Shang, Xiao-qiang Liu. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 512-524.
[7] Hui Xu, Liang-tong Zhan, He Li, Ji-wu Lan, Yun-min Chen, Hai-yan Zhou. Time- and stress-dependent model for predicting moisture retention capacity of high-food-waste-content municipal solid waste: based on experimental evidence[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 525-540.
[8] Liang-tong Zhan, Qing-wen Qiu, Wen-jie Xu, Yun-min Chen. Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 541-552.
[9] Xiao-chuan Liu, Wen-jie Xu, Liang-tong Zhan, Yun-min Chen. Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 553-564.
[10] Yue-dong Wu, Hong-guo Diao, Jian Liu, Chui-chang Zeng. Field studies of a technique to mitigate ground settlement of operating highways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 565-576.
[11] Jia He, Jian Chu, Shi-fan Wu, Jie Peng. Mitigation of soil liquefaction using microbially induced desaturation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 577-588.
[12] Jie Xu, Chao Zhou. A simple model for the hysteretic elastic shear modulus of unsaturated soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 589-596.
[13] Yin Cheng, Hao Yu, Bao-lin Zhu, Dao-xin Wei. Laboratory investigation of the strength development of alkali-activated slag-stabilized chloride saline soil[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 389-398.
[14] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[15] Yun Zhao, Dao-sheng Ling, Yun-long Wang, Bo Huang, Han-lin Wang. Study on a calibration equation for soil water content in field tests using time domain reflectometry[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 240-252.