Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2010, Vol. 11 Issue (2): 115-127    DOI: 10.1631/jzus.A0900208
Mechanical Engineering     
Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of −60 °C
Qin WANG, Kang CUI, Teng-fei SUN, Fu-sheng CHEN, Guang-ming CHEN, Kang CUI
State Key Laboratory of Clean Energy Utilization, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The optimization of the performance of a single-stage Linde-Hampson refrigerator (LHR) operating with six different binary refrigerants (R23/R134a, R23/R227ea, R23/R236ea, R170/R290, R170/R600a and R170/R600) with ozone depletion potentials (ODPs) of zero was conducted using a new approach at the temperature level of 60 °C. Among these binary refrigerants, the 0.55 and the 0.6 mole fractions of R23 for R23/R236ea are the most prospective nonflammable ones for the medium and low suction pressure compressors, respectively. For these two kinds of compressors, the 0.6 and the 0.65 mole fractions of R170 for R170/R600, respectively, are the most prospective binary refrigerants with low global warming potentials (GWPs). The results of optimization of pressure levels indicate that the optimum low pressure value for coefficients of performance (COP) is achieved when the minimum temperature differences occur at both the hot and the cold ends of the recuperator at a specified composition and pressure ratio. Two useful new parameters, the entropy production per unit heat recuperated and the ratio of heat recuperating capacity to the power consumption of the compression, were introduced to analyze the exergy loss ratio in the recuperator. The new approach employed in this paper also suggests a promising application even to the optimization of the performance with multi-component refrigerants.

Key wordsLinde-Hampson      Binary refrigerant      Refrigerator      Performance      Optimization     
Received: 15 April 2009      Published: 01 January 2010
CLC:  TB6  
Cite this article:

Qin WANG, Kang CUI, Teng-fei SUN, Fu-sheng CHEN, Guang-ming CHEN, Kang CUI. Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of −60 °C. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 115-127.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0900208     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2010/V11/I2/115

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[3] Jia-long Jiao, Hui-long Ren, Shu-zheng Sun, Christiaan Adika Adenya. Investigation of a ship’s hydroelasticity and seakeeping performance by means of large-scale segmented self-propelling model sea trials[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 468-484.
[4] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[5] Bao-tong Li, Su-na Yan, Jun Hong. A growth-based topology optimizer for stiffness design of continuum structures under harmonic force excitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 933-946.
[6] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[7] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[8] Yong Wang, Ji-en Ma, You-tong Fang. Generation III pressurized water reactors and China’s nuclear power[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 911-922.
[9] Pui-Lam Ng, Albert Kwok-Hung Kwan, Leo Gu Li. Packing and film thickness theories for the mix design of high-performance concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 759-781.
[10] Liang Ye, Yin-fu Jin, Shui-long Shen, Ping-ping Sun, Cheng Zhou. An efficient parameter identification procedure for soft sensitive clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 76-88.
[11] Antoine Dumas, Jean-Yves Dantan, Nicolas Gayton, Thomas Bles, Robin Loebl. An iterative statistical tolerance analysis procedure to deal with linearized behavior models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 353-360.
[12] Qing-long Meng, Xiu-ying Yan, Qing-chang Ren. Global optimal control of variable air volume air-conditioning system with iterative learning: an experimental case study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 302-315.
[13] Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao. Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(3): 241-249.
[14] Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Zhen Zhao. Multi-actuated mechanism design considering structure flexibility using correlated performance reinforcing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 864-873.
[15] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.