Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (4): 538-549    DOI: 10.1631/jzus.2007.A0538
Information & Computer Science     
Multiwavelets domain singular value features for image texture classification
RAMAKRISHNAN S., SELVAN S.
Department of Information Technology, PSG College of Technology, Coimbatore 641 004, India
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms.

Key wordsImage texture classification      Multiwavelets transformation      Probabilistic neural network (PNN)     
Received: 15 August 2006     
CLC:  TP391  
Cite this article:

RAMAKRISHNAN S., SELVAN S.. Multiwavelets domain singular value features for image texture classification. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(4): 538-549.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A0538     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I4/538

[1] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[2] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.
[3] Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin. A morphing machining strategy for artificial bone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 157-171.
[4] Chang-yu Cui, Bao-shi Jiang, You-bao Wang. Node shift method for stiffness-based optimization of single-layer reticulated shells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 97-107.
[5] Hue-yee Chong, Mahidzal Dahari, Hwa-jen Yap, Ying-tai Loong. Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 565-573.
[6] David Poto?nik, Bojan Dol?ak, Miran Ulbin. GAJA: 3D CAD methodology for developing a parametric system for the automatic (re)modeling of the cutting components of compound washer dies[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 327-340.
[7] Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Ri-na Sa. Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 187-197.
[8] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[9] Zhen-fei Zhan, Jie Hu, Yan Fu, Ren-Jye Yang, Ying-hong Peng, Jin Qi. Multivariate error assessment of response time histories method for dynamic systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(2): 121-131.
[10] Nur Saaidah Abu Bakar, Mohd Rizal Alkahari, Hambali Boejang. Analysis on fused deposition modelling performance[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 972-977.
[11] Jeonghwa Lee, Chi-Hyuck Jun. Biclustering of ARMA time series[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 959-965.
[12] Ding-yin XIA, Fei WU, Wen-hao LIU, Han-wang ZHANG. Image interpretation: mining the visible and syntactic correlation of annotated words[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1759-1768.
[13] Kai LUO, Dong-xiao LI, Ya-mei FENG, Ming ZHANG. Depth-aided inpainting for disocclusion restoration of multi-view images using depth-image-based rendering[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1738-1749.
[14] Rong ZHU, Min YAO. Image feature optimization based on nonlinear dimensionality reduction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1720-1737.
[15] Sheng-yang YU, Fang-lin WANG, Yun-feng XUE, Jie YANG. Bayesian moving object detection in dynamic scenes using an adaptive foreground model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1750-1758.