Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (3 ): 25-    DOI: 10.1631/jzus.2007.A0481
    
Study on reliability technology of contactor relay
LIU Guo-jin, ZHAO Jing-ying, WANG Hai-tao, YANG Chen-guang, SUN Shun-li
Postdoctor’s Work Station, Delixi Group Co., Ltd., Wenzhou 325604, China; Electrical Department, Hebei University of Technology, Tianjin 300130, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the reliability of contactor relay is studied. There are three main parts about reliability test and analysis. First, in order to analyze reliability level of contact relay, the failure ratio ranks are established as index base on the product level. Second, the reliability test method is put forward. The sample plan of reliability compliance test is gained from reliability sample theory. The failure criterion is ensured according to the failure modes of contactor relay. Third, after reliability test experiment, the analysis of failure physics is made and the failure reason is found.

Key wordsContactor relay      Reliability      Failure mode     
Received: 19 December 2006     
CLC:  TB114.3  
  O224  
  O211.6  
Cite this article:

LIU Guo-jin, ZHAO Jing-ying, WANG Hai-tao, YANG Chen-guang, SUN Shun-li. Study on reliability technology of contactor relay. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(3 ): 25-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A0481     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I3 /25

[1] Zi-qin Jiang, Yan-lin Guo, Ai-lin Zhang, Chao Dou, Cai-xia Zhang. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 20-32.
[2] Cao Wang, Quan-wang Li, Long Pang, A-ming Zou. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 677-688.
[3] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[4] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[5] Cao Wang, Quan-wang Li, A-ming Zou, Long Zhang. A realistic resistance deterioration model for time-dependent reliability analysis of aging bridges[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 513-524.
[6] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[7] Rui Zhou, Zhou-hong Zong, Xue-yang Huang, Zhang-hua Xia. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part II: numerical analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 405-418.
[8] P. W. Chan, Y. F. Lee. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 469-481.
[9] Ping Tan, Wei-ting He, Jia Lin, Hong-ming Zhao, Jian Chu. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 926-935.
[10] Jian-yun Chen, Qiang Xu, Jing Li, Shu-li Fan. Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 432-439.
[11] Lin-cong CHEN, Rong-hua HUAN, Wei-qiu ZHU. Feedback maximization of reliability of MDOF quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1245-1251.
[12] Juan WANG, Dan FENG, Fang WANG, Cheng-tao LU. Extending attributes page: a scheme for enhancing the reliability of storage system metadata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1106-1113.
[13] Xiao-hui TAN, Jian-guo WANG. Finite element reliability analysis of slope stability[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 645-652.
[14] Mojtaba VALINATAJ, Siamak MOHAMMADI, Saeed SAFARI. Reliability assessment of networks-on-chip based on analytical models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1801-1814.
[15] Xun ZHOU, Xiao-li YU. Fatigue crack growth rate test using a frequency sweep method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 346-350.