Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  0, Vol. 6 Issue (100): 17-22    DOI: 10.1631/jzus.2005.AS0017
Mechanical & Energy Engineering     
Extension of LCVM-type mixing rule to three-parameter equations of state for vapor-liquid equilibria of mixtures
HAN Xiao-hong, CHEN Guang-ming, WANG Qin, CUI Xiao-long
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the LCVM mixing rule is extended to the multi-parameter equations of state by combining infinite-pressure and zero-pressure mixing rule models. The new LCVM-type mixing rule, coupled with Patel-Teja equation of state (EOS) is applied for vapor-liquid equilibria of different polar and non-polar systems in which the NRTL activity coefficient model is used to calculate the excess Gibbs free energy. The tested results agree well with existing experimental data within a wide range of temperatures and pressures. In comparison with the Van der Waals mixing rule, the new mixing rule gives much better correlations for the vapor-liquid equilibria of non-polar and polar systems.

Key wordsVapor-liquid equilibrium (VLE)      Equation of state (EOS)      Mixing rule      Activity coefficient model     
Received: 09 April 2005     
CLC:  O642.4  
  TQ013.1  
Cite this article:

HAN Xiao-hong, CHEN Guang-ming, WANG Qin, CUI Xiao-long. Extension of LCVM-type mixing rule to three-parameter equations of state for vapor-liquid equilibria of mixtures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, 6(100): 17-22.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.AS0017     OR     http://www.zjujournals.com/xueshu/zjus-a/Y0/V6/I100/17

[1]   Bobbo, S., Roman, S., Nicola, E., Alberto, B., 1998. A recirculation apparatus for vapor-liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a, R236fa. Fluid Phase Equilibria, 150-151:343-352.
[2]   Boulouvalas, C., Spiliotis, N., Coutsikos, P., Tzouvaras, N., 1994. Prediction of vapor-liquid equilibrium with LCVM model: A linear combination of the Huron-Vidal and Michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state. Fluid Phase Equilibria, 92:75-106.
[3]   Coquelet, C., Hong, D.N., Chareton, A., Baba-Ahmed, A., Richon, D., 2003. Vapor-liquid equilibrium data for the difluoromethane+1,1,1,2,3,3,3-heptafluoropropane system at temperatures from 283.2 to 343.38 K and pressures up to 4.5 MPa. Int. J. of Refr., 26:559-565.
[4]   Han, X.H., Wang, Q., Chen, G.M., Cui, X.L., 2005. Extension of Huron-type mixing rule to three-parameter Harmens-Knapp cubic equation of state. Chemical Research in Chinese Universities, 21(3):209-212.
[5]   Holderbaum, T., Gmehling, J., 1991. PSRK: A group contribution equation of state based on UNFIAC. Fluid Phase Equilibria, 70:251-265.
[6]   Huron, M., Vidal, J., 1979. New Mixing rules in simple equations of State for representing vapor-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 3:225-271.
[7]   Jong, S.L., Quang, N.H., Ji, Y.P., Lee, B.G., 2004. Measurement of vapor-liquid equilibria for the binary mixture of Propane (R-290)+Isobutane (R-600a). J. Chem. Eng. Data, 49:192-198.
[8]   Kagan, B.B., Fulideman, B.M., Kafalafu, B.B., Guangshui, P.T., 1974. Vapor-liquid Equilibria Database (Version). Jiangtan Society Publishing Company, Tokyo, p.11-16.
[9]   Lee, M.J., Hsiao, C.C., Lin, H.M., 1997. Isothermal vapor-liquid equilibria for mixtures of methyl tetra-butyl ether, methyl acetate, and ethyl acetate. Fluid Phase Equilibria, 137:193-207.
[10]   Lim, J.S., Park, J.Y., Lee, B.G., 2002. Phase equilibria of 1,1,1-trifluoroethane (HFC-143a)+1,1,1,2-tetrafluoroethane (HFC-134a), and +1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, 313.15 K. Fluid Phase Equilibria, 193:29-39.
[11]   Michelsen, M.L., 1990. A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 60:213-219.
[12]   Mitsuho, H., Shuzo, O., Kunio, N., 1986. Computer Aided Data Book of Vapor-liquid Equilibria. Amsterdam and American Elsevier Publishing Company, New York.
[13]   Niesen, V., Palavra, A., Kidnay, A.J., Yesavage, V.F., 1986. An apparatus for vapor-liquid equilibrium at elevated temperatures and pressures and selected results and pressures and selection results for water-ethanol and methanol-ethanol systems. Fluid Phase Equilibria, 31:283-298.
[14]   Orbey, H., Sandler, S.I., 1995. On the combination of equations of state and free energy models. Fluid Phase Equilibria, 111:53-70.
[15]   Patel, N.C., Teja, A.S., 1982. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci., 37:463-473
[16]   Renon, H., Prausnitz, J.M., 1968. Local composition in thermodynamic excess function for liquid mixture. AIChE J., 14:135-144.
[17]   Sadus, R.J., 1993. Influence of combining rules and molecular shape on the high pressure phase equilibria of binary fluid mixtures. J. Phys. Chem., 97:1985-1992.
[18]   Twu, C.H., Coon, J.E., Bluck, D., Tilton, B., Rowland, M., 1998. Connection between zero-pressure mixing rules and infinite-pressure mixing rules. Fluid Phase Equilibria, 153:29-44.
[1] HAN Xiao-hong, CHEN Guang-ming, WANG Qin, CUI Xiao-long. Extension of LCVM-Type mixing rule to three-parameter equations of state for vapor-liquid equilibria of mixtures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(Supplement1): 17-22.