Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue ( 4): 6-    DOI: 10.1631/jzus.2005.A0283
    
Recent development of vortex method in incompressible viscous bluff body flows
LIU Lan, JI Feng, FAN Jian-ren, CEN Ke-fa
Clean Energy & Environment Engineering Key Laboratory of Ministry of Education and Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Vortex methods have been alternative tools of finite element and finite difference methods for several decades. This paper presents a brief review of vortex method development in the last decades and introduces efficient vortex methods developed for high Reynolds number bluff body flows and suitable for running on parallel computer architectures. Included in this study are particle strength exchange methods, core-spreading method, deterministic particle method and hybrid vortex methods. Combined with conservative methods, vortex methods can comprise the most available tools for simulations of three-dimensional complex bluff body flows at high Reynolds numbers.

Key wordsVortex methods      Simulation of flows      Bluff body Energy & Environment Engineering     
Received: 07 January 2004     
CLC:  TK16  
Cite this article:

LIU Lan, JI Feng, FAN Jian-ren, CEN Ke-fa. Recent development of vortex method in incompressible viscous bluff body flows. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 4): 6-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0283     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I 4/6

[1] Jun-chun Zhang, Le-ming Cheng, Cheng-hang Zheng, Zhong-yang Luo, Ming-jiang Ni. Development of non-premixed porous inserted regenerative thermal oxidizer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 671-678.
[2] Jian-guo Yang, Xiao-long Zhang, Hong Zhao, Li Shen. Non-linear relationship between combustion kinetic parameters and coal quality[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 344-352.
[3] Wei Feng, Zhi-jun Wu, Jun Deng, Li-guang Li. Auto-ignition and stabilization mechanism of diluted H2 jet flame[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 154-161.
[4] JI Feng, LIU Lan, FAN Jian-ren, CEN Ke-fa. Influence of coherent structures in the gas-particle circular cylinder wake flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(10): 21-.
[5] JIN Yu-qi, YAN Jian-hua, CEN Ke-fa. Study on the comprehensive combustion kinetics of MSW[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(3): 283-289.
[6] LUO Kun, JIN Han-hui, FAN Jian-ren, CEN Ke-fa. Large eddy simulation of the gas-particle turbulent wake flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(1): 106-110.
[7] JIN Han-hui, LUO Kun, FAN Jian-ren, CEN Ke-fa. Large eddy simulation of a particle-laden turbulent plane jet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(2): 175-180.
[8] JIN Han-hui, XIA Jun, FAN Jian-ren, CEN Ke-fa. Numerical investigation of confined swirling gas-solid two phase jet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2002, 3(1): 82-85.
[9] JIN Han-hui, XIA Jun, FAN Jian-ren, CEN Ke-fa. Simulating confined swirling gas-solid two phase jet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2002, 3(2): 157-161.