Biomedical Science |
|
|
|
|
Enantioselective assay of S(+)- and R(-)-propafenone in human urine by using RP-HPLC with pre-column chiral derivatization |
WU Yong-jiang, MA Ming-ming, ZENG Su |
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310031, China |
|
|
Abstract The enantioselective assay for S(+)- and R(-)-propafenone (PPF) in human urine that developed in this work involves extraction of propafenone from human urine and using S(+)-propafenone as internal standard, chiral derivatization with 2,3,4,6-tetra-O-β-D-glucopranosyl isothiocyanate, and quantitation by an RP-HPLC system with UV detection (λ=220 nm). A baseline separation of propafenone enantiomers was achieved on a 5-μm reverse phase ODS column, with a mixture of methanol:water:glacial acetic acid (25:12:0.02,v/v) as mobile phase. There was good linear relationship from 24.9 ng/ml to 1875.0 ng/ml for both of enantiomers. The regression equations of the standard curves based on CS-PPF (or CR-PPF) versus ratio of AS-PPF/AS (or AR-PPF/AS) were y=0.0032x-0.081, (r=0.999) for S-PPF and y=0.0033x+0.0039, (r=0.998) for R-PPF, respectively. The method\'s limit of detection was 12.5 ng/ml for both enantiomers, and the method\'s limit of quantitation was 28.2±0.52 ng/ml for S-PPF, 30.4±0.53 ng/ml for R-PPF (RSD<8%, n=5). The analytical method yielded average recovery of 98.9% and 100.4% for S-PPF and R-PPF, respectively. The relative standard deviation was no more than 6.11% and 6.22% for S-PPF and R-PPF, respectively. The method enabled study of metabolism of S(+)- and R(-)-propafenone in human urine. The results from 7 volunteers administered 150 mg racemic propafenone indicated that propafenone enantiomers undergo stereoselective metabolism and that in the human body, S(+)-propafenone is metabolized more extensively than R(-)-propafenone.
|
Received: 10 February 2003
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|