Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2003, Vol. 4 Issue (5): 565-572    DOI: 10.1631/jzus.2003.0565
Civil Engineering     
Experimental study on centrifugal concrete-filled steel tubes under bending and torsion
JIN Wei-liang, QU Chen, YU Yi
Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China; Department of Civil Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A real-size experiment on 11 tubes was done to study the performance of centrifugal concrete-filled steel tubes under bending and torsion. This paper first introduces the relevant operating method, equipment, subjects and processes. The factors that affect deformation and stiffness and the break mechanism under different loading were studied. Experimental stress analysis showed that the values of practical critical stress of steel tubes accorded well with the MISES Yielding Rule. The correlative equation (on the bearing capacity of a structural member under bending and torsion) deduced in this study may provide valuable reference for the design of this structural member.

Key wordsCentrifugal concrete-filled steel tube      Bending and torsion      Stiffness      Distortion      Bearing capacity     
Received: 10 September 2002     
CLC:  TU375  
Cite this article:

JIN Wei-liang, QU Chen, YU Yi. Experimental study on centrifugal concrete-filled steel tubes under bending and torsion. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(5): 565-572.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2003.0565     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2003/V4/I5/565

[1] Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele. Design procedure for thin three-layer plates made of a depleted material[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 427-442.
[2] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[3] Bao-tong Li, Su-na Yan, Jun Hong. A growth-based topology optimizer for stiffness design of continuum structures under harmonic force excitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 933-946.
[4] Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 644-655.
[5] Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 282-290.
[6] Xiao-long Song, Yu-chuan Bai, Chao Ying. A three-dimensional topographic survey based on two-dimensional image information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 68-82.
[7] Zhi-gang Shan, Sheng-jie Di. Loading-unloading test analysis of anisotropic columnar jointed basalts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 603-614.
[8] Mehmet Baran, Merve Aktas. Occupant friendly seismic retrofit by concrete plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 789-804.
[9] Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 778-788.
[10] Jia-jin Zhou, Kui-hua Wang, Xiao-nan Gong, Ri-hong Zhang. Bearing capacity and load transfer mechanism of a static drill rooted nodular pile in soft soil areas[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 705-719.
[11] Mykolas Daugevi?ius, Juozas Valivonis, Gediminas Mar?iukaitis. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 571-583.
[12] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[13] Guo-zhi Qiu, Jing-hai Gong, Jin-cheng Zhao. Parametric formulae for axial stiffness of CHS X-joints subjected to brace axial tension[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 121-130.
[14] Li-zhong Wang, Feng Yuan, Zhen Guo, Ling-ling Li. Numerical analysis of pipeline in J-lay problem[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(11): 908-920.
[15] Han-jie MA, Fan ZHOU, Rong-xin JIANG, Yao-wu CHEN. A network-aware error-resilient method using prioritized intra refresh for wireless video communications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1169-1176.