ARAP++:一类推广的局部/全局参数化算法
目的:本文针对单边界和多边界的三角网格提出了一种含有凸组合权值的局部/全局参数化方法(ARAP++)。该方法将凸组合权值与三角面片间仿射变换的Jacobian矩阵相结合,得到一种新的线性迭代格式,收敛迅速。它是一种自由边界的参数化方法。可以通过调整Jacobian矩阵的奇异值,使参数化网格保持原始网格的几何性质。同时在迭代格式中引入拉伸算子来处理高曲率的三角网格,减小了其参数化后的面积扭曲与拉伸扭曲。最后通过数值实验将ARAP++方法与其它经典参数化方法进行比较。实验结果表明本文方法所得到的参数化结果较之其它方法在角度、面积和拉伸等方面的扭曲变形有明显改进,从而使得该方法在纹理映射和重网格化等应用中得到较好的视觉效果。
创新点:首先通过优化弹性能量函数推导得到了一类局部/全局线性迭代格式,并阐明该方法与ARAP方法之间的联系。针对保面积的情况,提出了一种快速得到最佳拟合矩阵的方法。最后为提高算法的鲁棒性,对ARAP++方法进行改进,使其可以很好的处理高曲率网格的展平,尽可能防止参数化结果的网格重叠。
方法:ARAP++是一种线性迭代的参数化方法。本文首先将原始网格初始化展平到平面上,然后对初始化网格进行迭代计算。其中每次迭代主要分为两个阶段:(1)局部优化;(2)整体求解。实验证明本文算法收敛迅速,并且可以得到很好的纹理映射和重网格化结果。
结论:本文提出了一种自由边界的网格参数化方法,该方法可以使用不同的凸组合权值得到相应性质的参数化结果(图10),也可以通过改变Jacobian矩阵的奇异值来达到保角、保面积、保刚性的目的(图3)。本文方法针对不同的网格模型也可以通过拉伸算子来协调参数化后角度、面积以及拉伸扭曲之间的关系(图9),从而使得该方法在纹理映射(图13、14)和重网格化(图15)等应用中得到较好的视觉效果。
关键词:
网格参数化,
凸组合权值,
拉伸算子,
Jacobian矩阵