Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (5): 389-402    DOI: 10.1631/FITEE.1500385
    
Home location inference from sparse and noisy data: models and applications
Tian-ran Hu, Jie-bo Luo, Henry Kautz, Adam Sadilek
Computer Science Department, University of Rochester, NY 14623, USA
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Accurate home location is increasingly important for urban computing. Existing methods either rely on continuous (and expensive) Global Positioning System (GPS) data or suffer from poor accuracy. In particular, the sparse and noisy nature of social media data poses serious challenges in pinpointing where people live at scale. We revisit this research topic and infer home location within 100 m×100 m squares at 70% accuracy for 76% and 71% of active users in New York City and the Bay Area, respectively. To the best of our knowledge, this is the first time home location has been detected at such a fine granularity using sparse and noisy data. Since people spend a large portion of their time at home, our model enables novel applications. As an example, we focus on modeling people’s health at scale by linking their home locations with publicly available statistics, such as education disparity. Results in multiple geographic regions demonstrate both the effectiveness and added value of our home localization method and reveal insights that eluded earlier studies. In addition, we are able to discover the real buzz in the communities where people live.

Key wordsHome location      Mobility patterns      Healthcare     
Received: 07 November 2015      Published: 04 May 2016
CLC:  TP391  
Cite this article:

Tian-ran Hu, Jie-bo Luo, Henry Kautz, Adam Sadilek. Home location inference from sparse and noisy data: models and applications. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 389-402.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500385     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I5/389


基于稀疏噪声数据的家的位置推断:模型与应用

目的:家,是人们生活的中心。由于家的特殊意义,在对于人类活动的研究中,确定家的位置就显得尤为重要。本文旨在从一个人的签到记录上准确预测家的具体位置(精度在100米以内)。
创新点:由于家的位置属于隐私,我们无法,也不能直接使用用户的隐私数据来进行研究。因此数据的采集和近似是第一个难题。本文的解决方法是认为人们在家里说的话跟在外面说的话不一样。由于人们在家里签到会说一些特点的词汇,比如“睡觉”、“洗澡”,等等。我们收集了带有这样词汇的签到,然后把这样的签到句子经由多人筛选。如果所有人都认为某一条签到是来自家里的,我们就认为这个签到的位置是发送者的家的位置。
方法:从人们的签到中抽取一些关键的特征,再把这些特征经由数据挖掘的算法提炼得出一个综合的判断。我们考虑的特征包括,人们出现在某地点的频率、时间,以及是否在夜间出现等等。
结论:实验证明,可以以70%+的准确率预测70%+的活跃社交网络用户,而且精度是100米以内。

关键词: 家的位置,  移动模式,  医疗保健 
[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[5] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[8] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[9] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[10] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.