Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (10): 839-847    DOI: 10.1631/jzus.C1400152
    
A bidirectional brain-computer interface for effective epilepsy control
Yu Qi, Fei-qiang Ma, Ting-ting Ge, Yue-ming Wang, Jun-ming Zhu, Jian-min Zhang, Xiao-xiang Zheng, Zhao-hui Wu
Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; Department of Computer Science, Zhejiang University, Hangzhou 310027, China; Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310027, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Brain-computer interfaces (BCIs) can provide direct bidirectional communication between the brain and a machine. Recently, the BCI technique has been used in seizure control. Usually, a closed-loop system based on BCI is set up which delivers a therapic electrical stimulus only in response to seizure onsets. In this way, the side effects of neurostimulation can be greatly reduced. In this paper, a new BCI-based responsive stimulation system is proposed. With an efficient morphology-based seizure detector, seizure events can be identified in the early stages which trigger electrical stimulations to be sent to the cortex of the brain. The proposed system was tested on rats with penicillin-induced epileptic seizures. Online experiments show that 83% of the seizures could be detected successfully with a short average time delay of 3.11 s. With the therapy of the BCI-based seizure control system, most seizures were suppressed within 10 s. Compared with the control group, the average seizure duration was reduced by 30.7%. Therefore, the proposed system can control epileptic seizures effectively and has potential in clinical applications.

Key wordsBrain-computer interface      Epilepsy      Seizure detection      Responsive neurostimulation     
Received: 26 April 2014      Published: 09 October 2014
CLC:  TP39  
  R31  
Cite this article:

Yu Qi, Fei-qiang Ma, Ting-ting Ge, Yue-ming Wang, Jun-ming Zhu, Jian-min Zhang, Xiao-xiang Zheng, Zhao-hui Wu. A bidirectional brain-computer interface for effective epilepsy control. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 839-847.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400152     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I10/839


基于双向脑机接口的癫痫抑制系统

研究目的:皮层电刺激作为新的治疗手段,能够有效抑制癫痫发作,弥补传统癫痫治疗方法的不足。现有电刺激治疗方法大都采用持续刺激的方式,或遵照既定的刺激方案,刺激量大,副作用强,尚未广泛应用于临床。脑机接口技术有望为电刺激治疗提供有效闭环控制,从而降低电刺激带来的组织损伤和副作用。
\n创新要点:首先,提出\"双阈值\"癫痫检测算法,针对癫痫脑电波形态特征,实现在线快速检测;其次,建立闭环脑机接口系统,通过反应性高频皮层刺激,有效抑制癫痫。
\n试验结果:通过建立双向脑机接口技术,对脑电信号进行实时分析,从而在癫痫发作前期将其准确检测出来,并触发反应性电刺激,有效抑制癫痫。在青霉素癫痫大鼠模型上的对照试验表明,基于癫痫脑电形态学特征的癫痫检测方法,癫痫检测率83%,平均检测延迟3.11秒;实验组相比于对照组,平均癫痫发作时间减少30.7%。
\n重要结论:通过双向闭环脑机接口系统,能够实现\"按需刺激\",从而大大降低电刺激量,减小副作用和组织损伤。基于脑机接口的反应性电刺激系统,能够对癫痫进行实时检测和刺激,有效抑制癫痫发作。该系统具有临床应用潜力。

关键词: 脑机接口,  癫痫,  癫痫检测,  反应性电刺激 
[1] Bang-hua Yang, Liang-fei He, Lin Lin, Qian Wang. Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 486-496.
[2] Suparerk Janjarasjitt. Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1147-1153.
[3] Hong-tao Wang, Yuan-qing Li, Tian-you Yu. Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 832-838.
[4] Jin-he Shi, Ji-zhong Shen, Yu Ji, Feng-lei Du. A submatrix-based P300 brain-computer interface stimulus presentation paradigm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(6): 452-459.
[5] Yu Su, Yu Qi, Jian-xun Luo, Bian Wu, Fan Yang, Yi Li, Yue-ting Zhuang, Xiao-xiang Zheng, Wei-dong Chen. A hybrid brain-computer interface control strategy in a virtual environment[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(5): 351-361.
[6] Wei-dong Chen, Jian-hui Zhang, Ji-cai Zhang, Yi Li, Yu Qi, Yu Su, Bian Wu, Shao-min Zhang, Jian-hua Dai, Xiao-xiang Zheng, Dong-rong Xu. A P300 based online brain-computer interface system for virtual hand control[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 587-597.