Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (10): 807-812    DOI: 10.1631/jzus.C1400153
    
Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice
Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang
Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Eye-specific segregation in the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) starts from the embryonic stage and continues to develop postnatally until eye-opening in mice. However, there have been few systematic studies on the details of this developmental process. Here, we carried out time-dependent studies of eye-specific segregation in the dLGN and SC. Our results demonstrated that the development of eye-specific segregation in the SC is completed before postnatal day 12 (P12), which is earlier than in the dLGN (P20). During the whole period, ipsilateral and overlapping axonal projections decreased continuously in both the dLGN and SC. On the other hand, contralateral axonal projections showed little change, except for a slight decrease between P8 and P20 in the dLGN.

Key wordsEye segregation      Dorsal lateral geniculate nucleus (dLGN)      Superior colliculus      Mouse visual system     
Received: 26 April 2014      Published: 09 October 2014
CLC:  TP183  
  Q42  
Cite this article:

Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400153     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I10/807


后胚胎期小鼠外膝体和上丘双眼分离的发育

研究目的:在小鼠视觉系统中,外膝体和上丘是自视网膜信息传递的两个重要中转站,而小鼠外膝体和上丘的结构特点之一是具有双眼分离的现象。本文意在系统地研究后胚胎期小鼠外膝体和上丘双眼分离的发育情况。
\n创新要点:首先,对后胚胎期上丘双眼分离随时间的发育进行了系统研究;其次,在同一个系统中,采用相同的实验方法和分析方法,同时研究外膝体和上丘中双眼分离的发育,使横向比较成为可能。
\n方法提亮:将偶联荧光染料的CTB进行眼内注射,48小时后灌流切鼠脑,利用Matlab程序分析同侧、异侧投射所占比例以及两者投射相重叠的比例。
\n重要结论:(1)在对外膝体和上丘双眼分离发育的整个过程中,同侧投射和同侧异侧重叠投射的比例都显著降低,与之相比,异侧投射所占比例的变化并非单向,且变化幅度小很多。(2)整个发育过程中,可将外膝体和上丘中双眼分离的发育分为两个阶段:快速发育阶段和趋缓的精细发育阶段。这两个阶段在外膝体和上丘中所需时间不同;实验数据表明,丘双眼分离的发育早于外膝体。

关键词: 双眼分离,  外膝体,  上丘,  小鼠视觉系统 
[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[2] Ali Uysal, Raif Bayir. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 941-952.
[3] Xiao-chuan Sun, Hong-yan Cui, Ren-ping Liu, Jian-ya Chen, Yun-jie Liu. Modeling deterministic echo state network with loop reservoir[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(9): 689-701.
[4] Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed. Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(6): 403-412.
[5] Xin-zheng Xu, Shi-fei Ding, Zhong-zhi Shi, Hong Zhu. Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 131-138.
[6] Dimitrios Theodoridis, Yiannis Boutalis, Manolis Christodoulou. Direct adaptive regulation of unknown nonlinear systems with analysis of the model order problem[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 1-16.
[7] Jian Bao, Yu Chen, Jin-shou Yu. A regeneratable dynamic differential evolution algorithm for neural networks with integer weights[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(12): 939-947.
[8] Yan Deng, Xiang-ning He, Jing Zhao, Yan Xiong, Yan-qun Shen, Jian Jiang. Application of artificial neural network for switching loss modeling in power IGBTs[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(6): 435-443.