Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (9): 697-716    DOI: 10.1631/jzus.C1400102
    
A survey for image resizing
Xiao Lin, Ying-lan Ma, Li-zhuang Ma, Rui-ling Zhang
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Academy of Information Technology, Luoyang Normal University, Luoyang 471022, China; Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, IL 61820, USA
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Image resizing is a key technique for displaying images on different devices, and has attracted much attention in the past few years. This paper reviews the image resizing methods proposed in recent years, gives a detailed comparison on their performance, and reveals the main challenges raised in several important issues such as preserving an important region, minimizing distortions, and improving efficiency. Furthermore, this paper discusses the research trends and points out the possible hotspots in this field. We believe this survey can give some guidance for researchers from relevant research areas, offering them an overall and novel view.

Key wordsImage resizing      Saliency measures      Cropping      Seam carving      Warping     
Received: 21 March 2014      Published: 06 September 2014
CLC:  TP391  
Cite this article:

Xiao Lin, Ying-lan Ma, Li-zhuang Ma, Rui-ling Zhang. A survey for image resizing. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 697-716.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400102     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I9/697


图像缩放方法综述

研究目的:对图像缩放方法进行全面总结,为今后图像缩放研究提供新视角。
\n文章内容:通过对重要区域保持、最小化变形和性能方面的分析,总结各种图像缩放方法的优缺点。首先,分析了图像显著性检测方法。其次,将图像缩放方法分为缩放、裁剪、缝裁剪、变形、多算子和其他方法,总结了近年提出的一些视频缩放方法。最后,总结图像缩放方法,指出未来研究热点包括:基于视频显著性的视频缩放技术的深入研究,具有更多语义信息、复杂结构和不同拓扑关系的图像缩放方法的研究,对特殊场景图像的缩放,如何更加高效地进行图像缩放,等。

关键词: 图像缩放,  显著性检测,  裁剪,  缝裁剪,  变形 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.
[14] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[15] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.