Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (7): 514-524    DOI: 10.1631/jzus.C1300342
    
Procedural generation and real-time rendering of a marine ecosystem
Rong Li, Xin Ding, Jun-hao Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, Hu-jun Bao
State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China; PLA Unit 61741, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit (CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units (GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance. Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.

Key wordsProcedural generation      Marine ecosystem      Biological feature      Graphic processing unit acceleration     
Received: 01 December 2013      Published: 10 July 2014
CLC:  TP391  
Cite this article:

Rong Li, Xin Ding, Jun-hao Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, Hu-jun Bao. Procedural generation and real-time rendering of a marine ecosystem. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 514-524.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300342     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I7/514


复杂海洋生态系统的过程式生成与实时绘制

研究目的:面向具有生物多样性的大范围复杂海洋生态环境,实现对其复杂几何的高效建模生成,同时实现实时绘制。
创新要点:我们使用了一种CPU和GPU混合的过程式生成流水线,从而充分发挥了CPU的灵活性和GPU的高计算性能,取得了整体上的高效率。
研究方法:首先,考虑了海底地形、波能、光能、生物属性等影响因素,提出了一种以竞争机制为原则的生态环境模拟过程,输出区域海底环境的生物空间分布(图4)。然后,针对海洋生物个体,提出了一个两阶段的过程式生成流水线(图2)。第一阶段,在CPU上通过解码一系列语法,生成粗糙的几何外形和高度紧凑的细节信息;第二阶段,基于现代GPU的强大硬件细分能力,实时解码细节信息,完成多细节层次的生物细节几何生成。最后,针对海洋生物之间的互动,系统定制了动态模拟模块。通过对复杂物理模型的简化,在CPU上实现对海洋生物整体形状形变的实时计算。在GPU上利用该形变计算结果,生成生物的形变细节(图11)。
重要结论:针对大范围海下生态环境,提出了一种高效的过程式建模和绘制系统,达到了复杂几何的高效生成及实时三维场景漫游效果。

关键词: 过程式生成,  海洋生态环境,  生物特性,  GPU加速 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[11] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.
[12] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[13] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[14] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[15] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.