Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (6): 417-424    DOI: 10.1631/jzus.C1200310
    
A multiple maneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order
Shi-cang Zhang, Jian-xun Li, Liang-bin Wu, Chang-hai Shi
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Aviation Key Laboratory of Science and Technology on AISSS, AVIC Radar and Avionics Institute, Wuxi 214063, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We describe the design of a multiple maneuvering targets tracking algorithm under the framework of Gaussian mixture probability hypothesis density (PHD) filter. First, a variation of the generalized pseudo-Bayesian estimator of first order (VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system models (JMS-PHD). The probability of each kinematic model, which is used in the JMS-PHD filter, is updated with VGPB1. The weighted sum of state, associated covariance, and weights for Gaussian components are then calculated. Pruning and merging techniques are also adopted in this algorithm to increase efficiency. Performance of the proposed algorithm is compared with that of the JMS-PHD filter. Monte-Carlo simulation results demonstrate that the optimal subpattern assignment (OSPA) distances of the proposed algorithm are lower than those of the JMS-PHD filter for maneuvering targets tracking.

Key wordsGaussian mixture PHD filter      Jump Markov system      Generalized pseudo-Bayesian estimator of first order (GPB1)      Multi-target tracking     
Received: 05 November 2012      Published: 04 June 2013
CLC:  TP391  
Cite this article:

Shi-cang Zhang, Jian-xun Li, Liang-bin Wu, Chang-hai Shi. A multiple maneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order. Front. Inform. Technol. Electron. Eng., 2013, 14(6): 417-424.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200310     OR     http://www.zjujournals.com/xueshu/fitee/Y2013/V14/I6/417


A multiple maneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order

We describe the design of a multiple maneuvering targets tracking algorithm under the framework of Gaussian mixture probability hypothesis density (PHD) filter. First, a variation of the generalized pseudo-Bayesian estimator of first order (VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system models (JMS-PHD). The probability of each kinematic model, which is used in the JMS-PHD filter, is updated with VGPB1. The weighted sum of state, associated covariance, and weights for Gaussian components are then calculated. Pruning and merging techniques are also adopted in this algorithm to increase efficiency. Performance of the proposed algorithm is compared with that of the JMS-PHD filter. Monte-Carlo simulation results demonstrate that the optimal subpattern assignment (OSPA) distances of the proposed algorithm are lower than those of the JMS-PHD filter for maneuvering targets tracking.

关键词: Gaussian mixture PHD filter,  Jump Markov system,  Generalized pseudo-Bayesian estimator of first order (GPB1),  Multi-target tracking 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[5] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[8] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.