Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (10): 719-735    DOI: 10.1631/jzus.C1200032
    
Learning a hierarchical image manifold for Web image classification
Rong Zhu, Min Yao, Li-hua Ye, Jun-ying Xuan
School of Information Engineering, Jiaxing University, Jiaxing 314001, China; School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Image classification is an essential task in content-based image retrieval. However, due to the semantic gap between low-level visual features and high-level semantic concepts, and the diversification of Web images, the performance of traditional classification approaches is far from users’ expectations. In an attempt to reduce the semantic gap and satisfy the urgent requirements for dimensionality reduction, high-quality retrieval results, and batch-based processing, we propose a hierarchical image manifold with novel distance measures for calculation. Assuming that the images in an image set describe the same or similar object but have various scenes, we formulate two kinds of manifolds, object manifold and scene manifold, at different levels of semantic granularity. Object manifold is developed for object-level classification using an algorithm named extended locally linear embedding (ELLE) based on intra- and inter-object difference measures. Scene manifold is built for scene-level classification using an algorithm named locally linear submanifold extraction (LLSE) by combining linear perturbation and region growing. Experimental results show that our method is effective in improving the performance of classifying Web images.

Key wordsWeb image classification      Manifold learning      Image manifold      Semantic granularity      Distance measure     
Received: 12 February 2012      Published: 01 October 2012
CLC:  TP391  
Cite this article:

Rong Zhu, Min Yao, Li-hua Ye, Jun-ying Xuan. Learning a hierarchical image manifold for Web image classification. Front. Inform. Technol. Electron. Eng., 2012, 13(10): 719-735.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200032     OR     http://www.zjujournals.com/xueshu/fitee/Y2012/V13/I10/719


Learning a hierarchical image manifold for Web image classification

Image classification is an essential task in content-based image retrieval. However, due to the semantic gap between low-level visual features and high-level semantic concepts, and the diversification of Web images, the performance of traditional classification approaches is far from users’ expectations. In an attempt to reduce the semantic gap and satisfy the urgent requirements for dimensionality reduction, high-quality retrieval results, and batch-based processing, we propose a hierarchical image manifold with novel distance measures for calculation. Assuming that the images in an image set describe the same or similar object but have various scenes, we formulate two kinds of manifolds, object manifold and scene manifold, at different levels of semantic granularity. Object manifold is developed for object-level classification using an algorithm named extended locally linear embedding (ELLE) based on intra- and inter-object difference measures. Scene manifold is built for scene-level classification using an algorithm named locally linear submanifold extraction (LLSE) by combining linear perturbation and region growing. Experimental results show that our method is effective in improving the performance of classifying Web images.

关键词: Web image classification,  Manifold learning,  Image manifold,  Semantic granularity,  Distance measure 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.