Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (12): 1087-1097    DOI: 10.1631/jzus.C1400135
    
A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems
Yang Guo, Xiang-hua Wang, Jun Hu
Centre for Optical and Electromagnetic Research, State Key Lab of MOI, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm, based on the ray tracing technique, is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones. The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization advantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algorithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10 aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.

Key wordsFinite-difference time-domain (FDTD)      Meshing      Parallel      Function language      Surface current distribution     
Received: 14 April 2014      Published: 05 December 2014
CLC:  TP391  
  O44  
Cite this article:

Yang Guo, Xiang-hua Wang, Jun Hu. A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1087-1097.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400135     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I12/1087


一种可结合共形FDTD方法求解复杂电磁问题的新型并行剖分技术

针对电大尺寸复杂模型实现一种高效并行剖分技术,并结合高阶共形FDTD方法,用于求解其时域电磁响应。提出一种基于射线追踪原理的新型FDTD网格剖分算法,并利用函数语言的天然并行优势实现剖分过程的高效并行实现。首先,提出一种基于射线追踪的网格剖分方法的原理,并与传统基于原点探测的剖分方法进行比较,证明其具有更高的准确性和效能。其次,分析该方法的可并行特征,并提出一种基于函数语言的并行实现方案。对一个电大金属球的雷达散射界面(RCS)仿真,证明该方法的准确性(图8)。并对多种不同处理器核数情况进行测试,证明该方法具有较高的并行效率(表2)。最后,结合使用高阶共形FDTD方法,成功模拟了战斗机、坦克和航母甲板的表面电流分布问题(图10-12)。针对电大尺寸复杂模型,实现其高效并行剖分,并利用高阶共形FDTD技术成功求解其时域电磁响应和表面电流分布。

关键词: FDTD,  网格剖分,  并行,  函数语言,  表面电流分布 
[1] Ke-shi GE, Hua-you SU, Dong-sheng LI, Xi-cheng LU. Efficient parallel implementation of a density peaks clustering algorithm on graphics processing unit[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 915-927.
[2] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[3] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel \\[3mm] platform with parameter initialization and an \\[4mm] adaptive robust method[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 303-316.
[4] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 303-316.
[5] Aftab Ahmed Chandio, Nikos Tziritas, Fan Zhang, Ling Yin, Cheng-Zhong Xu. Towards adaptable and tunable cloud-based map-matching strategy for GPS trajectories[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1305-1319.
[6] Hao XIE,Ruo-feng TONG. Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[7] Hong-yan Li, Nai-xue Xiong, Ping Huang, Chao Gui. PASS: a simple, efficient parallelism-aware solid state drive I/O scheduler[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 321-336.
[8] Ming-zhi Gao, Min Chen, Cheng Jin, Josep M. Guerrero, Zhao-ming Qian. Analysis, design, and experimental evaluation of power calculation in digital droop-controlled parallel microgrid inverters[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(1): 50-64.
[9] Young Joon Ahn, Christoph M. Hoffmann, Paul Rosen. A note on circle packing[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 559-564.
[10] Jing Zhang, Xiao-jun Chen, Jun-huai Li, Xiang Li. Task mapper and application-aware virtual machine scheduler oriented for parallel computing[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 155-177.
[11] Yang Liu, Jian-zhong Huang, Xiao-dong Shi, Qiang Cao, Chang-sheng Xie. Strip-oriented asynchronous prefetching for parallel disk systems[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(11): 799-815.
[12] Che-Wei Lin, Chang Hong Lin, Wei Jhih Wang. A power-aware code-compression design for RISC/VLIW architecture[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 629-637.
[13] Razieh Sadat Sadjady, Kamran Zamanifar. A self-routing load balancing algorithm in parallel computing: comparison to the central algorithm[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 455-463.
[14] Ying-jie Xia, Li Kuang, Xiu-mei Li. Accelerating geospatial analysis on GPUs using CUDA[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(12): 990-999.
[15] Dan Wu, Xue-cheng Zou, Kui Dai, Jin-li Rao, Pan Chen, Zhao-xia Zheng. Implementation and evaluation of parallel FFT on Engineering and Scientific Computation Accelerator (ESCA) architecture[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(12): 976-989.