Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (9): 729-743    DOI: 10.1631/jzus.C1400099
    
A controllable stitch layout strategy for random needle embroidery
Jie Zhou, Zheng-xing Sun, Ke-wei Yang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Random needle embroidery (RNE) is a graceful art enrolled in the world intangible cultural heritage. In this paper, we study the stitch layout problem and propose a controllable stitch layout strategy for RNE. Using our method, a user can easily change the layout styles by adjusting several high-level layout parameters. This approach has three main features: firstly, a stitch layout rule containing low-level stitch attributes and high-level layout parameters is designed; secondly, a stitch neighborhood graph is built for each region to model the spatial relationship among stitches; thirdly, different stitch attributes (orientations, lengths, and colors) are controlled using different reaction-diffusion processes based on a stitch neighborhood graph. Moreover, our method supports the user in changing the stitch orientation layout by drawing guide curves interactively. The experimental results show its capability for reflecting various stitch layout styles and flexibility for user interaction.

Key wordsRandom needle embroidery (RNE)      Stitch style      Stitch layout      Stitch neighborhood graph      Reaction diffusion     
Received: 18 March 2014      Published: 06 September 2014
CLC:  TP391  
Cite this article:

Jie Zhou, Zheng-xing Sun, Ke-wei Yang. A controllable stitch layout strategy for random needle embroidery. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 729-743.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400099     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I9/729


一种可控的乱针绣针法排布策略

研究目的:乱针绣(random needle embroidery)是列入世界非物质文化遗产的艺术,它融西方绘画技巧与中国刺绣技艺于一体,针法灵活多变,风格独特。采用计算机技术模拟乱针绣风格,对其传承和发展具有重要意义。如何设计有效、可控的针法排布机制是表现乱针绣针法特色以及乱针绣风格模拟的基础。
\n创新要点:提出一种参数驱动的针法排布策略,通过高层排布参数及反应扩散过程有效实现对绣线方向、长短、颜色的控制。用户通过调整高层参数或绘制简单的草图笔画即可方便地调整针法排布风格。
\n方法提亮:设计了包含绣线低层属性及高层排布参数的针法排布模型;建立邻域图表示相邻绣线之间的拓扑关系;提出基于邻域拓扑关系及反应扩散过程的针法排布控制策略;给出基于纹理映射及亮度衰减的绣线仿真算法。
\n重要结论:根据本文提出的针法排布策略,用户只需调整若干高层参数或绘制简单的笔画即可改变针法排布风格。实验结果表现了两方面特性:针法风格表现的多样性及用户交互的便利性。

关键词: 乱针绣,  针法风格,  针法排布,  针迹邻域图,  反应扩散 
[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[8] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.