Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (7): 537-550    DOI: 10.1631/jzus.C1300268
    
Probabilistic hypergraph based hash codes for social image search
Yi Xie, Hui-min Yu, Roland Hu
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order representation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hyperedges. Experiments on Flickr image datasets verify the performance of our proposed approach.

Key wordsHypergraph Laplacian      Probabilistic hypergraph      Hash codes      Image search     
Received: 26 September 2013      Published: 10 July 2014
CLC:  TP391  
Cite this article:

Yi Xie, Hui-min Yu, Roland Hu. Probabilistic hypergraph based hash codes for social image search. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 537-550.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300268     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I7/537


基于概率超图哈希编码的社交图像检索研究

研究目的:在过去十多年中,互联网多媒体数据爆炸性增长,数以亿计的网络图片给传统图像检索技术带来了巨大挑战。在如此庞大数据量上进行特征空间欧式距离最近邻搜索,不切实际。如何更有效地表达和检索网络图片成为当前研究热点。针对此热点和难点,本文提出了基于概率超图哈希编码的大规模图像快速检索技术。
创新要点:利用概率超图建立社交图片之间语义层面和视觉特征层面的关联性。相比简单图模型,超图模型能更有效地描述不同图片之间的高层次联系,寻找社交网络图片之间更深层次的信息。相比一般超图,概率超图能更有效地表述节点对超边的归属程度。利用超图拉普拉斯矩阵将概率超图投影到汉明(Hamming)空间,极大提升了图像存储、检索效率。
方法提亮:本方法结合了社交网络图片的视觉特征和用户标注信息,利用概率超图挖掘这两种信息的高层次关联性,并根据具体情况给予这两种信息不同权重。
重要结论:实验数据表明,与现有哈希检索方法相比,该方法对社交图像进行快速检索的准确率有较大提升。

关键词: 超图拉普拉斯,  概率超图,  哈希编码,  图像检索 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[10] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.
[14] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[15] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.