|
|
An improved parallel contrast-aware halftoning |
Ling-yue Liu, Wei Chen, Tien-tsin Wong, Wen-ting Zheng, Wei-dong Geng |
State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China |
|
|
Abstract Digital image halftoning is a widely used technique. However, achieving high fidelity tone reproduction and structural preservation with low computational time cost remains a challenging problem. This paper presents a highly parallel algorithm to boost real-time application of serial structure-preserving error diffusion. The contrast-aware halftoning approach is one such technique with superior structure preservation, but it offers only a limited opportunity for graphics processing unit (GPU) acceleration. Our method integrates contrast-aware halftoning into a new parallelizable error-diffusion halftoning framework. To eliminate visually disturbing artifacts resulting from parallelization, we propose a novel multiple quantization model and space-filling curve to maintain tone consistency, blue-noise property, and structure consistency. Our GPU implementation on a commodity personal computer achieves a real-time performance for a moderately sized image. We demonstrate the high quality and performance of the proposed approach with a variety of examples, and provide comparisons with state-of-the-art methods.
|
Received: 22 May 2013
Published: 06 December 2013
|
|
An improved parallel contrast-aware halftoning
Digital image halftoning is a widely used technique. However, achieving high fidelity tone reproduction and structural preservation with low computational time cost remains a challenging problem. This paper presents a highly parallel algorithm to boost real-time application of serial structure-preserving error diffusion. The contrast-aware halftoning approach is one such technique with superior structure preservation, but it offers only a limited opportunity for graphics processing unit (GPU) acceleration. Our method integrates contrast-aware halftoning into a new parallelizable error-diffusion halftoning framework. To eliminate visually disturbing artifacts resulting from parallelization, we propose a novel multiple quantization model and space-filling curve to maintain tone consistency, blue-noise property, and structure consistency. Our GPU implementation on a commodity personal computer achieves a real-time performance for a moderately sized image. We demonstrate the high quality and performance of the proposed approach with a variety of examples, and provide comparisons with state-of-the-art methods.
关键词:
Digital image halftoning,
Error diffusion,
GPU,
Quantization,
Space-filling curve
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|