Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (11): 1176-1185    DOI: 10.1631/FITEE.1601203
    
Detecting slowly moving infrared targets using temporal filtering and association strategy
Jing-li Gao, Cheng-lin Wen, Zhe-jing Bao, Mei-qin Liu
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Software Engineering, Pingdingshan University, Pingdingshan 467000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The special characteristics of slowly moving infrared targets, such as containing only a few pixels, shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First, a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering, temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets, and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and has superior detection performance in comparison with several recent methods.

Key wordsTemporal target detection      Slowly moving targets      Graph matching      Target association     
Received: 25 April 2016      Published: 07 November 2016
CLC:  TP391  
Cite this article:

Jing-li Gao, Cheng-lin Wen, Zhe-jing Bao, Mei-qin Liu. Detecting slowly moving infrared targets using temporal filtering and association strategy. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1176-1185.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1601203     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I11/1176


基于时域滤波和关联策略的红外慢速目标检测

概要:红外慢速目标的一些独特特性,例如像素少,不成形的边缘信息,低信杂比和低速等,使得它们的检测异常困难,而当被淹没在复杂背景中时尤甚。为了解决这一问题,根据时域目标检测和关联策略,本文提出了一种有效的红外目标检测算法。首先,建立一种时域目标检测模型对疑似目标进行分割,该模型主要包含三个阶段,时域滤波,时域目标融合和交叉积滤波;然后提出一种图模型,来关联不同时刻获取的疑似目标。这种关联依赖于目标的运动和表观特征,可进行多次关联操作获取目标轨迹,并据此区分真实目标和由噪声或杂波引起的虚假目标。实验结果表明本文提出的方法能够准确、鲁棒地检测复杂背景下的红外慢速目标,且与几种基准方法相比具有优越的检测性能。

关键词: 时域目标检测,  慢速移动目标,  图匹配,  目标关联 
[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.