使用“基于分析的代码转换方法”来提升GPU特定的OpenCL kernel在多核/众核CPU上的性能移植性
目的:针对面向GPU设计的OpenCL kernel程序在CPU上性能移植性欠佳这一问题,设计一种基于访存特征分析的代码转换方法,提升性能移植性。
创新点:通过分析OpenCL kernel中的访存模式,去除不必要的局部存储数组及其带来的同步语句,并使用向量化和局域性重开发进一步优化代码,最终取得显著的性能提升。
方法:首先,针对OpenCL kernel代码中的数组访问,设计一种精确的线性化访问描述子(图2)。然后,利用该描述子,分两步对GPU特定的OpenCL kernel代码进行转换,以提高其在CPU上的性能(图7)。第一步为基于分析的work-item折叠,即通过分析访问描述子,找出并去除不必要的局部存储数组及其带来的同步语句,然后完成work-item折叠。第二步为适应架构的代码优化,即针对CPU架构的特点,使用向量化和局域性重开发进一步优化折叠后的代码。最后,上述代码转换过程被整合为一个工具链,连同一个调度程序,嵌入到一个开源的OpenCL运行时系统中(图11)。实验结果表明,这种转换方法可以显著提升GPU特定的OpenCL kernel在Intel Sandy Bridge架构CPU和Intel Knights Corner架构协处理器上的性能。
结论:准确分析OpenCL kernel代码中的访存模式,不仅利于判断局部存储数组是否适合于CPU架构,还能用于指导之后的代码优化过程,因此是提高性能移植性的重要步骤。
关键词:
OpenCL,
性能移植性,
多核/众核CPU,
基于分析的转换