Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (3): 173-190    DOI: 10.1631/FITEE.14a0210
    
Interpolation of a spline developable surface between a curve and two rulings
Alicia Cantón, Leonardo Fernández-Jambrina
ETSI Navales, Universidad Politécnica de Madrid, Arco de la Victoria 4, Madrid 28040, Spain
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.

Key wordsDevelopable surfaces      Spline surfaces      Blossoms     
Received: 09 July 2014      Published: 04 March 2015
CLC:  TP391  
Cite this article:

Alicia Cantón, Leonardo Fernández-Jambrina. Interpolation of a spline developable surface between a curve and two rulings. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 173-190.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.14a0210     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I3/173


已知曲线与直母线插值可展样条曲面

目的:对由给定一条样条曲线和可展曲面中第一及最末直母线(ruling)界定的可展样条面片(patch)进行插值。
创新点:给定一条样条曲线和起始直母线构造插值可展样条曲面,需先给出曲面对边边界样条曲线。而用传统方法构造插值可展样条曲面不能限制两条直母线的全部端点。本文通过将可展样条曲面升阶的方法,在增加起始直母线全部端点的限制条件下,解决已知某一样条曲线和起始直母线的可展样条曲面插值问题。
方法:通过将可展样条曲面升阶,解决给定一条样条曲线和起始直母线及其全部端点情形下可展样条曲面插值问题。
结论:给定一条样条曲线和可展曲面的起始直母线及其端点,通过将可展样条曲面升阶,解决可展样条面片插值构造。此方法同样适用于三角可展样条曲面插值(图10)。

关键词: 可展曲面,  样条曲面,  开花(Blossom)运算 
[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.