Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (1): 1-11    DOI: 10.1631/FITEE.1400129
    
Capacity analysis for cognitive heterogeneous networks with ideal/non-ideal sensing
Tao Huang, Ying-lei Teng, Meng-ting Liu, Jiang Liu
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Due to irregular deployment of small base stations (SBSs), the interference in cognitive heterogeneous networks (CHNs) becomes even more complex; in particular, the uncertainty of spectrum mobility aggravates the interference context. In this case, how to analyze system capacity to obtain a closed-form expression becomes a crucial problem. In this paper we employ stochastic methods to formulate the capacity of CHNs and achieve a closed-form expression. By using discrete-time Markov chains (DTMCs), the spectrum mobility with respect to the arrival and departure of macro base station (MBS) users is modeled. Then an integral method is proposed to derive the interference based on stochastic geometry (SG). Also, the effect of sensing accuracy on network capacity is discussed by concerning false-alarm and miss-detection events. Simulation results are illustrated to show that the proposed capacity analysis method for CHNs can approximate the conventional sum methods without rigorous requirement for channel station information (CSI). Therefore, it turns out to be a feasible and efficient way to capture the network capacity in CHNs.

Key wordsCognitive heterogeneous networks      Markov chain      Stochastic geometry      Homogeneous Poisson point process (HPPP)     
Received: 10 April 2014      Published: 23 December 2014
CLC:  TP393  
Cite this article:

Tao Huang, Ying-lei Teng, Meng-ting Liu, Jiang Liu. Capacity analysis for cognitive heterogeneous networks with ideal/non-ideal sensing. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 1-11.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400129     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I1/1


理想/非理想感知条件下认知异构网络的容量分析

目的:针对认知异构网络中频谱的动态性和干扰的复杂性,利用随机几何理论进行干扰分析并提出网络容量的闭式表达式,为认知异构网络的性能分析提供理论基础。
创新:利用随机几何理论分析认知异构网络中复杂的干扰问题,并提出干扰和网络容量的闭式表达式。
方法:采用\"分而治之\"的方法,一方面,针对频谱使用的动态性,利用离散时间马尔可夫链对主用户(宏基站用户)进行建模,得到主用户离开和到达概率,并考虑理想/非理想感知情况,分别计算出两种情况下主用户和次用户的数量;另一方面,针对用户位置的随机性,利用齐次泊松点过程对基站和用户进行建模,再采用随机几何理论对干扰进行分析,提出计算干扰的闭式表达式。最后,利用以上两部分结果分别求出理想/非理想感知情况下网络容量的闭式表达式。
结论:利用随机几何理论分析认知异构网络中的干扰和容量具有可行性和准确性;理想感知情况下得到的网络容量要大于非理想感知的情况。

关键词: 认知异构网络,  马尔可夫链,  随机几何,  齐次泊松点过程 
[1] Li-ming Yang, Wei Zhang, Yun-fang Chen. Time-series prediction based on global fuzzy measure in social networks[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 805-816.
[2] Xiao-lei Ma, Yin-hai Wang, Feng Chen, Jian-feng Liu. Transit smart card data mining for passenger origin information extraction[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(10): 750-760.
[3] Lei WANG, Miao-liang ZHU, Li-ping DENG, Xin YUAN. Automatic pectoral muscle boundary detection in mammograms based on Markov chain and active contour model[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(2): 111-118.