Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (3): 238-248    DOI: 10.1631/FITEE.1400083
    
Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model
Li-gang Ma, Jin-song Deng, Huai Yang, Yang Hong, Ke Wang
Institute of Applied Remote Sensing & Information Technology, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Environmental Sciences and School of Meteorology, University of Oklahoma, Norman, OK 73019, USA; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and heterogeneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi-variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorrelation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy assessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.

Key wordsZY-1 02C satellite      Classification      Urban      Multi-variable model     
Received: 07 March 2014      Published: 04 March 2015
CLC:  TP751.1  
Cite this article:

Li-gang Ma, Jin-song Deng, Huai Yang, Yang Hong, Ke Wang. Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 238-248.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400083     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I3/238


基于国产高分辨率遥感影像和面向对象多变量模型的城市土地利用分类

目的:资源一号02C星搭载国产遥感卫星序列中为数不多的高性能传感器之一,获取大量的影像数据。然而,在空间分辨率相对较高,光谱分辨率比较低的情况下,城市土地覆盖分类势必存在一定问题。如何深度挖掘影像光谱和空间信息,建立可行的技术方法流程,实现准确的城市土地覆盖分类,进而为其推广应用奠定基础十分必要。
创新点:提出光谱与空间领域信息、判别分析、面向对象法结合的技术流程体系(图2),实现城市土地覆盖的准确分类。对分类结果采用基于点和图斑面积的两种验证方法进行验证。
方法:计算图像纹理、空间自相关特征、形状指数、植被指数、不透水面含量等信息,与光谱信息结合,经过判别分析和相关分析的筛选,实现面向对象的分类和两种指标的精度评价。
结论:根据本文提出的技术路线,可以实现相对准确的城市土地覆盖分类。总体点位精度在92%以上(表2),面积精度达到82%以上,误差通常源自住宅和裸土的混淆。影像数据在城市土地覆盖分类方面非常有效。

关键词: 02C星,  分类,  城市,  多变量模型 
[1] Ehab ALI , Mahamod ISMAIL, Rosdiadee NORDIN, Nor Fadzilah ABDULAH. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 753-772.
[2] Ehsan Saeedi, Yinan Kong, Md. Selim Hossain. Side-channel attacks and learning-vector quantization[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 511-518.
[3] Guo-jiang Shen, Yong-yao Yang. A dynamic signal coordination control method for urban arterial roads and its application[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 907-918.
[4] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[5] G. R. Brindha, P. Swaminathan, B. Santhi. Performance analysis of new word weighting procedures for opinion mining[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[6] Jie He, Yue-xiang Yang, Yong Qiao, Wen-ping Deng. Fine-grained P2P traffic classification by simply counting flows[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 391-403.
[7] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[8] Jie Zhou, Bi-cheng Li, Gang Chen. Automatically building large-scale named entity recognition corpora from Chinese Wikipedia[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 940-956.
[9] Ying Cai, Meng-long Yang, Jun Li. Multiclass classification based on a deep convolutional network for head pose estimation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 930-939.
[10] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. A deep learning approach to the classification of 3D CAD models[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[11] Hao Shao, Feng Tao, Rui Xu. Transfer active learning by querying committee[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 107-118.
[12] Xiao-hu Ma, Yan-qi Tan, Gang-min Zheng. A fast classification scheme and its application to face recognition[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 561-572.
[13] Bing-kun Wang, Yong-feng Huang, Wan-xia Yang, Xing Li. Short text classification based on strong feature thesaurus[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(9): 649-659.
[14] Yue-neng Yang, Jie Wu, Wei Zheng. Trajectory tracking for an autonomous airship using fuzzy adaptive sliding mode control[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(7): 534-543.
[15] Jian-cheng Fang, Ke Sun. Composite disturbance attenuation based saturated control for maintenance of low Earth orbit (LEO) formations[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 328-338.