Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (10): 1031-1043    DOI: 10.1631/FITEE.1500302
    
一种基于新的势能曲面变平的卫星舱布局问题的启发式方法
Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao
Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Office of Informationization, Construction and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
A new energy landscape paving heuristic for satellite module layouts
Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao
Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Office of Informationization, Construction and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
 全文: PDF 
摘要: \n 概要:卫星舱布局问题是一种带性能约束的三维布局优化问题,已经被证明具有NP难度。通过采用拟物策略和罚函数方法,我们将该问题转化为一个不带约束的优化问题。势能曲面变平法(energy landscape paving, ELP)是一个经典的基于蒙特卡洛的全局优化算法,已被成功应用于许多优化问题。ELP能够通过在复杂的势能曲面随机行走来搜索低能构形。然而,当ELP陷入又窄又深的势能曲面山谷时,它很难逃离。通过提出ELP方法中直方图函数的一种新的更新机制,我们获得了一种改进的势能曲面变平法。通过将带局部搜索的梯度法融入改进的ELP方法,为卫星舱布局问题提出了一种新的全局搜索方法nELP。本文测试了来自文献的两个有代表性的算例。计算结果显示,nELP是求解带性能约束的卫星舱布局问题的有效算法。
\n
关键词: 三维布局势能曲面变平布局优化性能约束    
Abstract: This article describes a study of the satellite module layout problem (SMLP), which is a three-dimensional (3D) layout optimization problem with performance constraints that has proved to be non-deterministic polynomial-time hard (NP-hard). To deal with this problem, we convert it into an unconstrained optimization problem using a quasi-physical strategy and the penalty function method. The energy landscape paving (ELP) method is a class of Monte-Carlo-based global optimization algorithm that has been successfully applied to solve many optimization problems. ELP can search for low-energy layouts via a random walk in complex energy landscapes. However, when ELP falls into the narrow and deep valleys of an energy landscape, it is difficult to escape. By putting forward a new update mechanism of the histogram function in ELP, we obtain an improved ELP method which can overcome this drawback. By incorporating the gradient method with local search into the improved ELP method, a new global search optimization method, nELP, is proposed for SMLP. Two representative instances from the literature are tested. Computational results show that the proposed nELP algorithm is an effective method for solving SMLP with performance constraints.
Key words: Three-dimensional packing    Energy landscape paving    Layout optimization    Performance constraints
收稿日期: 2015-09-17 出版日期: 2016-10-08
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jing-fa Liu
Juan Huang
Gang Li
Wen-jie Liu
Ting-zhao Guan
Liang Hao

引用本文:

Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. A new energy landscape paving heuristic for satellite module layouts. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500302        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I10/1031

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[6] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[8] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.