Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (8): 717-729    DOI: 10.1631/FITEE.1500287
    
海豚群算法
Tian-qi Wu, Min Yao, Jian-hua Yang
School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Dolphin swarm algorithm
Tian-qi Wu, Min Yao, Jian-hua Yang
School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: 概要:群体智能算法采取分布式解决问题的策略,已成功应用于很多传统算法难以解决的优化问题。目前已有粒子群算法、遗传算法、蜂群算法、蚁群算法等已经成功实现且效果良好的算法,但在优化对象日益复杂的今天,这些算法越来越难以满足人们对精度和时间的要求,而改进这些算法所带来的收益也越来越低。在这种情况下,设计一种新的算法来更好地解决优化问题变得越来越有意义。海豚有很多值得关注的生物特性和生活习性,如回声定位、信息交流、合作分工等。通过将这些生物特性和生活习性与群体智能的思想结合起来,引入优化问题中,我们提出了一种新的算法——海豚群算法,并给出了算法的相关定义,详细阐述了算法中搜寻、呼叫、接受、捕猎四个关键阶段。为了验证海豚群算法的效果,使用了10个性质各异的基准函数对海豚群算法以及粒子群算法、遗传算法、蜂群算法进行实验,并将4个函数的收敛速度和基准函数结果进行比较。实验结果表明,海豚群算法在大多数情况下,特别是在低维单峰函数、高维多峰函数、步长函数、带随机变量的函数中表现良好,具有收敛速度先慢后快、阶段性收敛、不易陷入局部最优、对基准函数具体性质没有要求等特点,尤其适用于适应度函数调用次数较多、使用个体较少的优化问题。
关键词: 群体智能仿生算法海豚优化    
Abstract: By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human’s demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm’ in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.
Key words: Swarm intelligence    Bio-inspired algorithm    Dolphin    Optimization
收稿日期: 2015-09-04 出版日期: 2016-08-05
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Tian-qi Wu
Min Yao
Jian-hua Yang

引用本文:

Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500287        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I8/717

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Hamid Reza Boveiri. 基于渐进式蚁群优化的多处理器任务分配[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 498-510.
[3] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[4] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[5] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[6] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. AI2.0时代的群体智能[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15-43.
[7] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. 有定子径向通风孔的大型永磁同步发电机的转矩特性[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[8] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[9] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[10] Rui Zhao, Gui-he Qin, Jia-qiao Liu. 一种解决FlexRay总线静态段信号调度问题的矩形装箱优化方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[11] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. 一种基于参数扰动的芯片成品率双目标优化框架[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[12] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. 一种基于新的势能曲面变平的卫星舱布局问题的启发式方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.
[13] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. 基于混合生物地理学优化的8自由度冗余臂逆运动学求解[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[14] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. 一种新型三维不规则排样构造算法HAPE3D[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.
[15] Ahmet Sayar, Süleyman Eken, Okan ?ztürk. 不确定空间二维范围查询的Kd-树和四叉树分解[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 98-108.