Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (6): 527-542    DOI: 10.1631/FITEE.1500292
    
求解多目标卫星舱布局优化问题的带局部搜索的Wang-Landau抽样算法
Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang
Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Office of Informationization Construction and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search
Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang
Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Office of Informationization Construction and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
 全文: PDF 
摘要: 目的:成功的卫星舱布局设计不仅可以有效降低卫星舱的发射成本与建造成本,而且可以提高其承载能力、使用寿命及稳定性。本文研究成果理论上可望推广应用于具有不同布局空间和考虑其他设计目标、约束条件的布局设计问题,有助于推进航天器布局设计理论的研究。在算法实践上期望有助于人造卫星仪器舱布局设计问题实用化方法与技术的研究和应用,并可望推广应用于其它复杂航天器布局设计领域。
创新点:将Wang-Landau随机抽样算法和基于梯度法的局部搜索算法相结合,并引入一些启发式布局更新策略,提出了一种新的混合算法。实验结果表明该算法可以有效解决多目标卫星舱组件布局优化问题。
方法:借鉴罚函数思想把带约束的优化问题转化为不带约束的优化问题;采用二分法找到卫星舱的最小半径;提出快速干涉量计算方法;通过结合Wang-Landau抽样算法,基于梯度法的局部搜索算法和启发式布局更新策略构建了一种混合算法(WL-LS)。
结论:通过结合Wang-Landau抽样算法、局部搜索算法和启发式布局更新策略,所提出的混合算法在实验结果上优于现有的最好算法,是一种求解多目标卫星舱布局优化问题的有效算法。
关键词: 装填问题布局设计卫星舱Wang-Landau抽样算法    
Abstract: The layout design of satellite modules is considered to be NP-hard. It is not only a complex coupled system design problem but also a special multi-objective optimization problem. The greatest challenge in solving this problem is that the function to be optimized is characterized by a multitude of local minima separated by high-energy barriers. The Wang-Landau (WL) sampling method, which is an improved Monte Carlo method, has been successfully applied to solve many optimization problems. In this paper we use the WL sampling method to optimize the layout of a satellite module. To accelerate the search for a global optimal layout, local search (LS) based on the gradient method is executed once the Monte-Carlo sweep produces a new layout. By combining the WL sampling algorithm, the LS method, and heuristic layout update strategies, a hybrid method called WL-LS is proposed to obtain a final layout scheme. Furthermore, to improve significantly the efficiency of the algorithm, we propose an accurate and fast computational method for the overlapping depth between two objects (such as two rectangular objects, two circular objects, or a rectangular object and a circular object) embedding each other. The rectangular objects are placed orthogonally. We test two instances using first 51 and then 53 objects. For both instances, the proposed WL-LS algorithm outperforms methods in the literature. Numerical results show that the WL-LS algorithm is an effective method for layout optimization of satellite modules.
Key words: Packing    Layout design    Satellite module    Wang-Landau algorithm
收稿日期: 2015-09-06 出版日期: 2016-06-06
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jing-fa Liu
Liang Hao
Gang Li
Yu Xue
Zhao-xia Liu
Juan Huang

引用本文:

Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 527-542.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500292        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I6/527

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[5] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[8] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[9] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.