Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (6): 501-515    DOI: 10.1631/FITEE.1500184
    
ARAP++:一类推广的局部/全局参数化算法
Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China; School of Software, Dalian University of Technology, Dalian 116620, China; Max Planck Institute for Mathematics in the Sciences, Leipzig 70569, Germany
ARAP++: an extension of the local/global approach to mesh parameterization
Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China; School of Software, Dalian University of Technology, Dalian 116620, China; Max Planck Institute for Mathematics in the Sciences, Leipzig 70569, Germany
 全文: PDF 
摘要: 目的:本文针对单边界和多边界的三角网格提出了一种含有凸组合权值的局部/全局参数化方法(ARAP++)。该方法将凸组合权值与三角面片间仿射变换的Jacobian矩阵相结合,得到一种新的线性迭代格式,收敛迅速。它是一种自由边界的参数化方法。可以通过调整Jacobian矩阵的奇异值,使参数化网格保持原始网格的几何性质。同时在迭代格式中引入拉伸算子来处理高曲率的三角网格,减小了其参数化后的面积扭曲与拉伸扭曲。最后通过数值实验将ARAP++方法与其它经典参数化方法进行比较。实验结果表明本文方法所得到的参数化结果较之其它方法在角度、面积和拉伸等方面的扭曲变形有明显改进,从而使得该方法在纹理映射和重网格化等应用中得到较好的视觉效果。
创新点:首先通过优化弹性能量函数推导得到了一类局部/全局线性迭代格式,并阐明该方法与ARAP方法之间的联系。针对保面积的情况,提出了一种快速得到最佳拟合矩阵的方法。最后为提高算法的鲁棒性,对ARAP++方法进行改进,使其可以很好的处理高曲率网格的展平,尽可能防止参数化结果的网格重叠。
方法:ARAP++是一种线性迭代的参数化方法。本文首先将原始网格初始化展平到平面上,然后对初始化网格进行迭代计算。其中每次迭代主要分为两个阶段:(1)局部优化;(2)整体求解。实验证明本文算法收敛迅速,并且可以得到很好的纹理映射和重网格化结果。
结论:本文提出了一种自由边界的网格参数化方法,该方法可以使用不同的凸组合权值得到相应性质的参数化结果(图10),也可以通过改变Jacobian矩阵的奇异值来达到保角、保面积、保刚性的目的(图3)。本文方法针对不同的网格模型也可以通过拉伸算子来协调参数化后角度、面积以及拉伸扭曲之间的关系(图9),从而使得该方法在纹理映射(图13、14)和重网格化(图15)等应用中得到较好的视觉效果。
关键词: 网格参数化凸组合权值拉伸算子Jacobian矩阵    
Abstract: Mesh parameterization is one of the fundamental operations in computer graphics (CG) and computer-aided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for single- and multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area) of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
Key words: Mesh parameterization    Convex combination weights    Stretch operator    Jacobian matrix
收稿日期: 2015-06-11 出版日期: 2016-06-06
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Zhao Wang
Zhong-xuan Luo
Jie-lin Zhang
Emil Saucan

引用本文:

Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan. ARAP++: an extension of the local/global approach to mesh parameterization. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 501-515.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500184        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I6/501

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[6] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[8] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.