Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (9): 729-743    DOI: 10.1631/jzus.C1400099
    
一种可控的乱针绣针法排布策略
Jie Zhou, Zheng-xing Sun, Ke-wei Yang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
A controllable stitch layout strategy for random needle embroidery
Jie Zhou, Zheng-xing Sun, Ke-wei Yang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
 全文: PDF 
摘要: 研究目的:乱针绣(random needle embroidery)是列入世界非物质文化遗产的艺术,它融西方绘画技巧与中国刺绣技艺于一体,针法灵活多变,风格独特。采用计算机技术模拟乱针绣风格,对其传承和发展具有重要意义。如何设计有效、可控的针法排布机制是表现乱针绣针法特色以及乱针绣风格模拟的基础。
\n创新要点:提出一种参数驱动的针法排布策略,通过高层排布参数及反应扩散过程有效实现对绣线方向、长短、颜色的控制。用户通过调整高层参数或绘制简单的草图笔画即可方便地调整针法排布风格。
\n方法提亮:设计了包含绣线低层属性及高层排布参数的针法排布模型;建立邻域图表示相邻绣线之间的拓扑关系;提出基于邻域拓扑关系及反应扩散过程的针法排布控制策略;给出基于纹理映射及亮度衰减的绣线仿真算法。
\n重要结论:根据本文提出的针法排布策略,用户只需调整若干高层参数或绘制简单的笔画即可改变针法排布风格。实验结果表现了两方面特性:针法风格表现的多样性及用户交互的便利性。
关键词: 乱针绣针法风格针法排布针迹邻域图反应扩散    
Abstract: Random needle embroidery (RNE) is a graceful art enrolled in the world intangible cultural heritage. In this paper, we study the stitch layout problem and propose a controllable stitch layout strategy for RNE. Using our method, a user can easily change the layout styles by adjusting several high-level layout parameters. This approach has three main features: firstly, a stitch layout rule containing low-level stitch attributes and high-level layout parameters is designed; secondly, a stitch neighborhood graph is built for each region to model the spatial relationship among stitches; thirdly, different stitch attributes (orientations, lengths, and colors) are controlled using different reaction-diffusion processes based on a stitch neighborhood graph. Moreover, our method supports the user in changing the stitch orientation layout by drawing guide curves interactively. The experimental results show its capability for reflecting various stitch layout styles and flexibility for user interaction.
Key words: Random needle embroidery (RNE)    Stitch style    Stitch layout    Stitch neighborhood graph    Reaction diffusion
收稿日期: 2014-03-18 出版日期: 2014-09-06
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jie Zhou
Zheng-xing Sun
Ke-wei Yang

引用本文:

Jie Zhou, Zheng-xing Sun, Ke-wei Yang. A controllable stitch layout strategy for random needle embroidery. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 729-743.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1400099        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I9/729

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[6] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[8] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[10] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[13] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[14] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[15] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.