Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (9): 722-732    DOI: 10.1631/jzus.CIIP1301
    
Primal least squares twin support vector regression
Hua-juan Huang, Shi-fei Ding, Zhong-zhi Shi
School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China; Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
Primal least squares twin support vector regression
Hua-juan Huang, Shi-fei Ding, Zhong-zhi Shi
School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China; Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
 全文: PDF 
摘要: The training algorithm of classical twin support vector regression (TSVR) can be attributed to the solution of a pair of quadratic programming problems (QPPs) with inequality constraints in the dual space. However, this solution is affected by time and memory constraints when dealing with large datasets. In this paper, we present a least squares version for TSVR in the primal space, termed primal least squares TSVR (PLSTSVR). By introducing the least squares method, the inequality constraints of TSVR are transformed into equality constraints. Furthermore, we attempt to directly solve the two QPPs with equality constraints in the primal space instead of the dual space; thus, we need only to solve two systems of linear equations instead of two QPPs. Experimental results on artificial and benchmark datasets show that PLSTSVR has comparable accuracy to TSVR but with considerably less computational time. We further investigate its validity in predicting the opening price of stock.
关键词: Twin support vector regressionLeast squares methodPrimal spaceStock prediction    
Abstract: The training algorithm of classical twin support vector regression (TSVR) can be attributed to the solution of a pair of quadratic programming problems (QPPs) with inequality constraints in the dual space. However, this solution is affected by time and memory constraints when dealing with large datasets. In this paper, we present a least squares version for TSVR in the primal space, termed primal least squares TSVR (PLSTSVR). By introducing the least squares method, the inequality constraints of TSVR are transformed into equality constraints. Furthermore, we attempt to directly solve the two QPPs with equality constraints in the primal space instead of the dual space; thus, we need only to solve two systems of linear equations instead of two QPPs. Experimental results on artificial and benchmark datasets show that PLSTSVR has comparable accuracy to TSVR but with considerably less computational time. We further investigate its validity in predicting the opening price of stock.
Key words: Twin support vector regression    Least squares method    Primal space    Stock prediction
收稿日期: 2013-01-27 出版日期: 2013-09-05
CLC:  TP18  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hua-juan Huang
Shi-fei Ding
Zhong-zhi Shi

引用本文:

Hua-juan Huang, Shi-fei Ding, Zhong-zhi Shi. Primal least squares twin support vector regression. Front. Inform. Technol. Electron. Eng., 2013, 14(9): 722-732.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.CIIP1301        http://www.zjujournals.com/xueshu/fitee/CN/Y2013/V14/I9/722

[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. 用于解决非线性受电弓系统的启发式神经网络计算[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 464-484.
[2] Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. 混合-增强智能:协作与认知[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153-179.
[3] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. 无人车自主定位和障碍物感知的视觉主导多传感器融合方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 122-138.
[4] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. AI2.0时代的群体智能[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15-43.
[5] Bo-hu Li, Bao-cun Hou, Wen-tao Yu, Xiao-bing Lu, Chun-wei Yang. 人工智能在智能制造领域的应用研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86-96.
[6] Hao Fang, Shao-lei Lu, Jie Chen, Wen-jie Chen. 基于面向任务的协同特征向量的联盟形成算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 139-148.
[7] Tao-cheng Hu, Jin-hui Yu. 基于最大间隔的贝叶斯分类器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.
[8] Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. 区间值信息系统中基于信息熵的属性约简[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.
[9] Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner. 通过情景化人工机构(SAI)实现灵活的危机管理校准[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 309-324.
[10] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. 应用于普适群体决策的智能谈判模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[11] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[12] Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. 后胚胎期小鼠外膝体和上丘双眼分离的发育[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.
[13] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. 基于区间值模糊粗糙集的知识建模及相似性推理:焊接变形预报[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[14] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. 基于非线性支持向量机和遗传算法的移动ECG质量评估[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[15] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. 用于在线值函数近似的贪婪特征替换方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.